Math, asked by saaniya30, 1 year ago

alpha and beta are zeros of polynomial p x = 2 x square - 7 x + 3 find the value of alpha cube + beta cube

Answers

Answered by MaTHshik
4
alpha= 3 beta= 1/2
alpha cube+beta cube=3³+(1/2)³
=27+1/8
=217/8
Hope it helps u and make it as brainliest!
Answered by Robin0071
7
Solution:-

given by equation:-

p(x) = 2 {x}^{2}  - 7x + 3 \\ root \: are \:  \alpha ans \:  \beta  \\ then \\  \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ 7}{2}  \\  \alpha . \beta  =  \frac{c}{a}  =  \frac{3}{2}  \\ we \: have \\  { \alpha }^{3}  +  { \beta }^{3}  =  {( \alpha  +  \beta )}^{3}  - 3 \alpha  \beta ( \alpha  +  \beta ) \\  =  { (\frac{7}{2} )}^{3}  - 3 \times  \frac{3}{2}  \times  \frac{7}{2}  \\  { \alpha }^{3}  +  { \beta }^{3}  =  \frac{343}{8}  -  \frac{63}{4}  \\  { \alpha }^{3}  +  { \beta }^{3} =  \frac{343 - 126}{8}  \\  { \alpha }^{3}  +  { \beta }^{3} =  \frac{217}{8}  \\ ( { \alpha }^{3}  +  { \beta }^{3} = 27 \frac{1}{8} )ans
Similar questions