Math, asked by harshitameghani, 9 months ago

alpha and beta are zeros of polynomial x^2-6x+k find the value of k such that ( alpha+beta)^2 -2 alpha.beta =40​

Answers

Answered by pulakmath007
15

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

If  \alpha \:  \: and \:  \:  \beta \: are the zeroes of the quadratic polynomial a {x}^{2}  + bx + c

Then

 \displaystyle \:  \alpha  +   \beta \:  =  -  \frac{b}{a}  \:  \: and \:  \:   \: \alpha \beta \:  =  \frac{c}{a}

CALCULATION

Here  \alpha \:  \: and \:  \:  \beta \: are the zeroes of the quadratic polynomial  {x}^{2}  - 6x + k

Then

 \displaystyle \:  \alpha  +   \beta \:  =   6 \:  \: and \:  \:   \: \alpha \beta \:  =  k

 {( \alpha +   \beta )}^{2}   - 2\alpha  \beta  = 40

 \implies \: 36 - 2k = 40

 \implies \:  2k =  - 4

So

k =  - 2

Answered by Anonymous
11

ANSWER✔

\large\underline\bold{GIVEN,}

\sf\therefore \: p(x)=x^2-6x+k

\sf\dashrightarrow (\alpha+ \beta)^2-2 (\alpha . \beta)=40

\sf\dashrightarrow \alpha\:and\beta\:are\:zeroes\:of\:the\:polynomial

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow FIND \:THE\:VALUE\:OF\:'K'.

\bf\therefore\bold\red{NOTE:-\: \alpha \:and \:\beta\: are\: zeroes \:of \:the \:polynomials.\:then}

\sf\therefore (\alpha + \beta)=  \dfrac{-b}{a}

\sf\therefore (\alpha . \beta)=  \dfrac{c}{a}

\sf\therefore x^2-6x+k

\sf\dashrightarrow a=1

\sf\dashrightarrow b= -6

\sf\dashrightarrow c= k

\sf\dashrightarrow (\alpha + \beta)=  \dfrac{-b}{a}

\sf\implies (\alpha + \beta)=  \dfrac{-(-6)}{1}

\sf\implies (\alpha + \beta)=  6

\sf\dashrightarrow (\alpha . \beta)=  \dfrac{c}{a}

\sf\implies (\alpha . \beta)=  \dfrac{k}{1}

\sf\implies (\alpha . \beta)=  k

\large\underline\bold{SOLUTION,}

\sf\therefore (\alpha+ \beta)^2-2 (\alpha . \beta)=40

\sf\therefore (\alpha + \beta)=  6

\sf\implies (\alpha . \beta)=  k

\sf\therefore (6)^2-2 (k)=40

\sf\implies 36-2k=40

\sf\implies -2k=40-36

\sf\implies  -2k= 4

\sf\implies -k= \dfrac{4}{2}

\sf\implies -k= \cancel \dfrac{4}{2}

\sf\implies -k=2

\sf\implies k=-2

\large{\boxed{\bf{\star\:\: k=-2\:\: \star }}}

\large\underline\bold{THE\:VALUE\:OF\:'k'\:\:IS\:-2}

_______________________

Similar questions