Math, asked by kanikaku, 10 months ago

alpha and beta are zeros of x square + 3 x minus 10 then Alpha square plus beta​

Answers

Answered by Anonymous
5

 \large\bf\underline {To \: find:-}

  • We need to find the value of α² + β²

 \large\bf\underline{Given:-}

  • p(x) = x² + 3x - 10

 \huge\bf\underline{Solution:-}

p(x) = x² + 3x - 10

a = 1

b = 3

c = -10

≫Sum of zeroes = -b/a

➛ α + β = -3/1

➛ α + β = -3 ........1)

≫ Product of zeroes = c/a

➛ αβ = -10/1

➛ αβ = -10 ......2)

We know that,

➻ (a + b)² = a² + b² + 2ab

➻ a² + b² = (a + b)² - 2ab

Now, finding value of α² + β²

➺ α² + β² = (α + β)² - 2αβ

putting value of α + β and αβ from 1) and 2)

➺ α² + β² = (-3)² - 2 × -10

➺ α² + β² = 9 + 20

➺ α² + β² = 29

hence,

✍ Value of α² + β² is 29

\rule{200}3

Answered by Anonymous
10

\blue{\bold{\underline{QueStion}}}

 \alpha  \: and \ \:  \beta  \: are \: zeroes \: of \:  {x}^{2}  + 3x - 10 \: then \:  { \alpha }^{2}  +  { \beta }^{2}

\blue{\bold{\underline{AnsWer}}}

29

\blue{\bold{\underline{To FiNd}}}

 { \alpha }^{2}  +  { \beta }^{2}

\blue{\bold{\underline{GiVen}}}

quadratic equations is x²+3x-10

general formula for quadratic equations is ax²+by+c=0

  • a=1
  • b=3
  • c=-10

\blue{\bold{\underline{SolUtion}}}

sum of polynomial=-b/a

 \alpha  +  \beta  =  \frac{ - b}{a}

 \alpha  +  \beta  =  \frac{ - 3}{1}

 \alpha  +  \beta  =  - 3

product of polynomial=c/a

 \alpha  \beta  =  \frac{c}{a}

 \alpha  \beta  =  \frac{ - 10}{1}

 \alpha  \beta  =  - 10

Now,

by using:

 { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta

 { \alpha }^{2}  +  { \beta }^{2}  =  {( - 3)}^{2}  - 2( - 10)

 { \alpha }^{2}  +  { \beta }^{2}  = 9 + 20

 { \alpha }^{2}  +  { \beta }^{2}  = 29

\red{\bold{\underline{\underline{Important}}}}

 { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta

 {( \alpha   -  \beta )}^{2}  =  {( \alpha  +  \beta )}^{2}  - 4 \alpha  \beta

Similar questions