Math, asked by Muthuaparajitha, 10 months ago

alpha and beta is are the zeros of the quadratic polynomial f(x) = x²-x-4, then find the value of alpha⁴+ beta⁴​

Answers

Answered by Anonymous
57

AnswEr :

49.

\bf{\red{\underline{\underline{\bf{Given\::}}}}}

α and β is the zeroes of the quadratic polynomial f(x) = x² - x - 4.

\bf{\red{\underline{\underline{\bf{To\:find\::}}}}}

The value of \alpha ^{4} +\beta ^{4}

\bf{\red{\underline{\underline{\bf{Explanation\::}}}}}

We have quadratic polynomial:f(x) = x² - x - 4 compared with ax² + bx+c=0

  • a = 1
  • b = -1
  • c = -4

\bf{\underline{\underline{\bf{According\:to\:the\:question\::}}}}}

\mathcal{\underline{\orange{SUM\:OF\:THE\:ZEROES\::}}}

\mapsto\sf{\alpha +\beta =\dfrac{-b}{a} =\dfrac{Coefficient\:of\:(x)^{2} }{Coefficient\:of\:(x)} }\\\\\\\mapsto\sf{\alpha +\beta =\dfrac{-(-1)}{1} }\\\\\\\mapsto\sf{\red{\alpha +\beta =1}}

\mathcal{\underline{\orange{PRODUCT\:OF\:THE\:ZEROES\::}}}

\mapsto\sf{\alpha \times \beta =\dfrac{c}{a} =\dfrac{Constant\:term }{Coefficient\:of\:(x)} }\\\\\\\mapsto\sf{\alpha \times \beta =\dfrac{-4}{1} }\\\\\\\mapsto\sf{\red{\alpha \times \beta =-4}}

Now;

\mapsto\sf{\orange{\alpha ^{4} +\beta ^{4} =\big(\alpha ^{2} +\beta ^{2} \big)^{2} -2\alpha ^{2} \beta ^{2} }}\\\\\\\mapsto\sf{\alpha ^{4} +\beta ^{4}=\big[(\alpha +\beta )^{2} -2\alpha \beta \big]^{2} -2(\alpha \beta )^{2} }

Putting the value of the zeroes in above formula :

\mapsto\sf{\big[(-1)^{2} -2(-4)\big]^{2} -2(-4)^{2} }\\\\\\\mapsto\sf{\big[(1+8)^{2} -2\times 16\big]}\\\\\\\mapsto\sf{9^{2} -32}\\\\\\\mapsto\sf{81-32}\\\\\\\mapsto\sf{\red{49}}

Thus;

\underbrace{\sf{The\:value\:of\:\alpha ^{4}+\beta ^{4} \:=\:\pink{49}}}}}

Answered by Anonymous
34

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

❚ QuEstiOn ❚

\alpha and \beta are the zeros of the quadratic polynomial

f(x) = X²-X-4,

Then find the value of \alpha^4 +\beta^4

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

❚ ANsWeR ❚

✺ Given :

  • Polynomial = f(x) = X²-X-4
  • Zeroes are = \alpha and \beta

✺ To FinD :

  • \alpha^4 +\beta^4 = ?

✺ Explanation :

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

We know that, Polynomial of having zeroes \alpha and \beta can be written as ,

\ \ {X^2-(\alpha+\beta)X+\alpha\beta=0}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Now ,

 \ \ {f(x)=X^2-X-4} Comparing this equation with \ \ {X^2-(\alpha+\beta)X+\alpha\beta} we get ,

:\longrightarrow (\alpha+\beta)=1

:\longrightarrow (\alpha\beta)=-4

\therefore\:\:\ \ {\alpha^4 +\beta^4}

\implies\ \ {(\alpha^2)^2 +(\beta^2)^2}

\implies\ \ {(\alpha^2 +\beta^2)^2-2\alpha^2\beta^2}

\implies\ \ {(\alpha^2 +\beta^2)^2-2(\alpha\beta)^2}

\implies\ \ {\{(\alpha +\beta)^2-2\alpha\beta\}^2-2(\alpha\beta)^2}

Now , putting the values ,  (\alpha+\beta)=1 and \alpha\beta=-4

\implies\ \ {\{(1)^2-2(-4)\}^2-2(-4)^2}

\implies\ \ {(1+8)^2-32}

\implies\ \ {9^2-32}

\implies\ \ {81-32}

\implies\ \ {49}

\therefore\:\:\boxed{\red{\ \ {(\alpha^4 +\beta^4)=49}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

❏ Formula UseD :-

\blacksquare \:\:\:\:\boxed{A^2+B^2=(A+B)^2-2AB}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions