Math, asked by adityarawat1086, 3 months ago

Alpha and beta zeroes of the quadratic
polynomial x²-6x +y. And the value
of 'y' of 3 Alpha +2beta =20​

Answers

Answered by Aeryxz
239

Given :

  • Alpha and beta zeroes of the quadratic polynomial x²-6x +y.
  • The value of 'y' of \sf 3\alpha+2\beta = 20

Solution :

General Equation of Quadratic polynomial :-

 \begin{gathered} \qquad  \sf \: a {x}^{2}  + by + c = 0 \end{gathered}

Given Equation of Quadratic polynomial :-

  \begin{gathered} \qquad \sf   {x}^{2} - 6x + y = 0  \end{gathered}

Hence,

 \begin{gathered} \qquad   \:  \star \:\sf a = 1\\   \qquad   \: \:\:\:\star \:\sf b =  - 6  \\  \qquad \sf \star\: c = y \end{gathered}

Sum of the roots :-

  \qquad  {\sf \: \alpha  +  \beta  =   \dfrac{ - b}{a}  =   -  \bigg(\dfrac { - 6}{1}  \bigg)= 6}

Product Of the roots :-

 \qquad \: { \sf  \alpha  \beta  =  \dfrac {c}{a} =  \dfrac{y}{1} = y}

As by given,

\qquad \sf 3 \alpha + 2 \beta = 20

The equations are,

\qquad : \longrightarrow  \sf \alpha + \beta = 6 ...(1)

\qquad :\longrightarrow \sf \alpha\beta = y ...(2)

\qquad :\longrightarrow \sf 3\alpha + 2 \beta = 20 ...(3)

Now let's use elimination method,

Multiply equation (1) by 3

\begin{array} {ccc} \sf \cancel{3\alpha} + & \sf 3 \beta& = 18 \\\sf \cancel{3\alpha} +&\sf 2 \beta & = \sf 20 \\\end{array}

________________

\qquad \boxed{\beta = -2}

Substitute values of \beta in (1),

\qquad : \implies \sf \alpha + \beta = 6 \\\\:\implies \sf  \alpha - 2 = 6\\\\ : \implies \sf \alpha = 6+2 \\\\ : \implies \boxed{\alpha = 8}

Substitute \alpha and \beta in (2)

\qquad : \implies \alpha\beta = y\\\\ : \implies (8)(-2)=y \\\\:\implies \boxed{\sf y = -16}

Answered by Anonymous
3

Answer:

Given :

Alpha and beta zeroes of the quadratic polynomial x²-6x +y.

The value of 'y' of

\sf 3\alpha+2\beta

= 203α+2β=20

Solution :

General Equation of Quadratic polynomial :-

\begin{gathered} \qquad \sf \: a {x}^{2} + by + c = 0 \end{gathered}

Given Equation of Quadratic polynomial :-

\begin{gathered} \qquad \sf {x}^{2} - 6x + y = 0 \end{gathered}

Hence,

\begin{gathered} \begin{gathered} \qquad \: \star \:\sf a = 1\\ \qquad \: \:\:\:\star \:\sf b = - 6 \\ \qquad \sf \star\: c = y \end{gathered}\end{gathered}

Sum of the roots :

\qquad {\sf \: \alpha + \beta = \dfrac{ - b}{a} = - \bigg(\dfrac { - 6}{1} \bigg)= 6}α+β=

a

−b

=−(

1

−6

)=6

Product Of the roots :-

\qquad \: { \sf \alpha \beta = \dfrac {c}{a} = \dfrac{y}{1} = y}αβ

\qquad \: { \sf \alpha \beta = \dfrac {c}{a} = \dfrac{y}{1} = y}αβ

=

a

c

=

1

y

=y

As by given,

\qquad \sf 3 \alpha + 2 \beta = 203α+2β=20

The equations are,

\qquad :\longrightarrow \sf \alpha\beta = y:⟶αβ=y ...(2)

qquad :\longrightarrow \sf 3\alpha + 2 \beta = 20:⟶3α+2β=20 ...(3)

Now let's use elimination method,

Multiply equation (1) by 3

\begin{gathered}\begin{array} {ccc} \sf \cancel{3\alpha} + & \sf 3 \beta& = 18 \\\sf \cancel{3\alpha} +&\sf 2 \beta & = \sf 20 \\\end{array}\end{gathered}

+

+

=18

=20

________________

\qquad \boxed{\beta = -2}

β=−2

Substitute values of \betaβ in (1),

\begin{gathered}\qquad : \implies \sf \alpha + \beta = 6 \\\\:\implies \sf \alpha - 2 = 6\\\\ : \implies \sf \alpha = 6+2 \\\\ : \implies \boxed{\alpha = 8} \end{gathered}

Substitute \alphaα and \betaβ in (2)

Step-by-step explanation:

\sf\pink{hope\:it\:helps}

Similar questions