Math, asked by rupakborah319, 10 months ago

alpha and bita are two zero of x^-3x+2 find the quadratic equation which zero is alpha+2and bita+2​

Answers

Answered by Sharad001
29

Question :-

 \rm if \:  \alpha \:  and  \:  \beta \: are \: two \: zero\: of  \: {x}^{2}  - 3x + 2 \\ \rm find \: the \: quadratic \: equation \: whose \:  \\  \rm zeros \: are \:  \alpha + 2 \:  and \:  \beta \:  + 2.

Answer :-

\boxed{  \to \rm {x}^{2}  - 5x + 12 = 0} \:

Solution :-

According to the question,

 \rm \alpha \:  and  \:  \beta \: are \: two \: zero\: of  \: {x}^{2}  - 3x + 2 \:  \\ \sf therefore \\  \\  \star \rm sum \: of \: zeros \:  =  \frac{ -  coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }  \\  \\  \mapsto \:  \alpha +  \beta =  \frac{ - ( - 3)}{1}  \\  \\  \mapsto \:  \alpha   +  \beta = 3 \:  \: .......eq.(1) \\  \\ \sf and \:  \\  \\  \star \rm product \: of \: zeros =  \frac{ constant \: term}{coefficient \: of \:  {x}^{2} }  \\  \\  \to \:  \alpha \beta =  \frac{2}{1}  \\  \\  \to \alpha \beta = 2 \:  \: .......eq.(2) \\  \\ now \\ \rm we \: need \: a \: quadratic \: whose \: zeros \: are \\  \\  \to \alpha + 2 \:  \: and \:  \beta + 2 \\  \\  \star \rm sum \: of \: zeros \: of \:required \: quadratic \: is \\  \\  \mapsto \:  \alpha + 2 +  \beta + 2 \\  \\  \mapsto \boxed{ \rm sum  \:  of \: zeros =   \alpha +  \beta + 4} \\  \\  \star \rm \: product \: of \: required \: quadratic \: is \:  \\  \\  \mapsto \: ( \alpha + 2)( \beta + 2) \\  \\  \mapsto \:  \alpha \beta + 2 \alpha + 2 \beta + 4 \\  \\  \mapsto \:  \alpha \beta \:  + 2( \alpha \:  +  \beta) + 4 \\ \\ \boxed{  \rm product \: of \: zeros =  \alpha \beta + 2( \alpha  +  \beta) + 4} \\  \\  \sf \: hence \\  \\ \sf from \: eq.(1) \\  \\ \rm  sum \: of \: zeros \:of \: required \: quadratic \\  \:  \:  \:   =  3 + 2 = 5 \\  \\ \bf and \:  \\  \\ \rm product \: of \: roots \: of \: required \: quadratic \:  \\ \:  \:   = 2 + 2( 3) + 4 = 12 \\  \\  \sf \: now \: we \: know \: that \:  \\ \sf required   \: quadratic \: equation \: is \:  \\ \\  \to \rm  {x}^{2}  - (sum \: of \: zeros)x + product \: of \: zeros = 0 \\  \\ \boxed{  \to \rm {x}^{2}  - 5x + 12 = 0} \\  \\ \rm this \: is \: the \: required \: quadratic \: equation \:  \\  \rm whose \: sum \: of \: zeros \: is \: 5 \: and \: product \: of \:  \\ \rm zeros \: is \: 12

Similar questions