Math, asked by devuu000, 9 months ago

alpha, beeta are the zereos of y2-12y+20, find qp whose zereos are 2alpha, 2beeta​

Answers

Answered by Anonymous
1

\bold\blue{Question}

\bold{\alpha \ and \ \beta \ are \ the \ zeroes \ of}

\bold{y^{2}-12y+20, \ find \ quadratic \ polynomial}

\bold{whose \ zeroes \ are \ 2\alpha, \ 2\beta.}

\bold\red{\underline{\underline{Answer:}}}

\bold{The \ required \ quadratic \ polynomial}

\bold{is \ y^{2}-24y+80.}

\bold\orange{Given:}

\bold{The \ given \ polynomial \ is}

\bold{=>y^{2}-12y+20}

\bold{=>Zeroes \ of \ polynomial \ are \ \alpha \ and \ \beta}

\bold\pink{To \ find:}

\bold{=>Quadratic \ polynomial \ with \ zeroes}

\bold{2\alpha \ and \ 2\beta.}

\bold\green{\underline{\underline{Solution}}}

\bold{The \ given \ quadratic \ polynomial \ is}

\bold{=>y^{2}-12y+20}

\bold{Here, \ a=1, \ b=-12, \ c=20.}

\bold{Sum \ of \ zeroes=\frac{-b}{a}}

\bold{\therefore{\alpha+\beta=\frac{-(-12)}{2}}}

\bold{\therefore{\alpha+\beta=12}}

\bold{Product \ of \ zeroes=\frac{c}{a}}

\bold{\therefore{\alpha×\beta=\frac{20}{1}}}

\bold{\therefore{\alpha×\beta=20}}

________________________________

\bold{Zeroes \ of \ new \ quadratic \ polynomial}

\bold{are \ 2\alpha \ and 2\beta.}

\bold{Sum \ of \ roots=2\alpha+2\beta}

\bold{\therefore{Sum \ of \ zeroes=2(\alpha+\beta)}}

\bold{\therefore{Sum \ of \ zeroes=2(12)}}

\bold{\therefore{Sum \ of \ zeroes=24}}

\bold{Product \ of \ zeroes=2\alpha×2\beta}

\bold{\therefore{Product \ of \ zeroes=2(\alpha×beta)}}

\bold{\therefore{Product \ of \ zeroes=4(\alpha×\beta)}}

\bold{\therefore{Product \ of \ zeroes=4(20)}}

\bold{\therefore{Product \ of \ zeroes=80}}

\bold{Quadratic \ polynomial \ is}

\bold{=>y^{2}-(Sum \ of \ zeroes)y+(Product \ of \ zeroes)}

\bold{=>y^{2}-24y+80}

\bold\purple{\tt{\therefore{The \ required \ quadratic \ polynomial}}}

\bold\purple{\tt{is \ y^{2}-24y+80.}}

Similar questions