Alpha, beeta are zeroes of quadratic polynomial p(x) =x²-6x+k if alpha-beeta =2 then find value of k
amitnrw:
Use (alpha-beeta)^2 + 4alphabeeta = (alpha+beeta)^2
Answers
Answered by
8
Answer:
8
Step-by-step explanation:
Given :
α, β are zeroes of the quadratic polynomial x² - 6x + k.
Comparing x² - 6x + k with ax² + bx + k we get
- a = 1
- b = - 6
- c = k
Sum of zeroes = α + β = - b/a = - ( - 6 ) / 1 = 6
Product of zeroes = αβ = c/a = k / 1 = k
Given :
α - β = 2
Using ( α - β )² + 4αβ = ( α + β )² we get
⇒ ( α - β )² + 4αβ = ( α + β )²
⇒ ( 2 )² + 4( k ) = ( 6 )²
⇒ 4 + 4k = 36
⇒ 4k = 36 - 4
⇒ 4k = 32
⇒ k = 32 / 4
⇒ k = 8
Therefore the value of k is 8.
Similar questions