alpha + beta=90°, than prove that sin beta + sec alpha/sin alpha= tan alpha +2tan beta...
Answers
Answered by
1
Answer:
α+β=90
sin(α)
sec(α)+sin(β)
=tan(α)+2tan(β)
rhs
=tan(α)+2tan(β)
=
cos(α)
sin(α)
+2
cos(β)
sin(β)
=
cos(α)cos(β)
sin(α)cos(β)+2sin(β)cos(α)
=
cos(α)cos(90−α)
sin(α)cos(90−α)+2sin(β)cos(α)
=
cos(α)sin(α)
sin(α)sin(α)+2sin(β) cos(α)
=
cos(α)sin(α)
1−cos(α)
2
+2sin(β)cos(α)
=
cos(α)sin(α)
1
+
sin(α)
−cos(α)+2sin(β)
=
cos(α)sin(α)
1
+
sin(α)
−cos(90−β)+2sin(β)
=
cos(α)sin(α)
1
+
sin(α)
sin(β)
=
sin(α)
sec(α)
+
sin(α)
sin(β)
=
sin(α)
sec(α)+sin(β)
=lhs
proved
Similar questions