Math, asked by sriniwassrinu6, 1 month ago

alpha,beta are the roots of the quadratic equation x²-3x-2=0 then the equation with roots alpha/2,beta/2​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \alpha , \beta  \: are \: the \: roots \: of \:  {x}^{2} - 3x - 2 = 0

We know,

\boxed{\red{\sf Sum\ of\ the\ roots=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha  +  \beta  =  - \dfrac{( - 3)}{1}

\rm \implies\:\boxed{ \tt{ \:  \alpha  +  \beta  =  3 \: }} -  -  - (1)

Also,

\boxed{\red{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm \implies\: \alpha\beta  = \dfrac{ - 2}{1}

\rm \implies\:\boxed{ \tt{ \:  \alpha\beta  = - 2 \: }} -  -  - (2)

Now, Consider

\red{\rm :\longmapsto\:\dfrac{ \alpha }{2}  + \dfrac{ \beta }{2} }

\rm \:  =  \: \dfrac{ \alpha  +  \beta }{2}

\rm \:  =  \: \dfrac{3}{2}

Now, Consider

\red{\rm :\longmapsto\:\dfrac{ \alpha }{2} \times \dfrac{ \beta }{2} }

\rm \:  =  \: \dfrac{ \alpha  \beta }{4}

\rm \:  =  \: \dfrac{ - 2}{4}

\rm \:  =  \:  -  \: \dfrac{1}{2}

So, The required Quadratic equation is

\rm :\longmapsto\: {x}^{2} - \bigg[\dfrac{ \alpha }{2}  + \dfrac{ \beta }{2} \bigg] + \dfrac{ \alpha  \beta }{4} = 0

So, on substituting the values, we get

\rm :\longmapsto\: {x}^{2} - \dfrac{3}{2} x  - \dfrac{1}{2}  = 0

\rm :\longmapsto\:\dfrac{ {2x}^{2}  - 3x - 1}{2}  = 0

\rm :\longmapsto\: {2x}^{2} - 3x - 1 = 0

Hence,

\rm :\longmapsto\: \boxed{ \tt{ \: {2x}^{2} - 3x - 1 = 0 \: }}

is the required Quadratic equation.

Similar questions