Math, asked by padmajanaidur, 10 months ago

alpha, beta are the roots of the X square + bx + c = 0 then limit X tends to Alpha 1 + x square + bx + c 1 by x minus Alpha isif alpha, beta are the roots of x square + bx + c then Limit extends to Alpha 1 + x square + bx + c ^ 1 minus one by x minus Alpha is ​

Answers

Answered by IamIronMan0
1

Answer:

Given that

 \alpha \:  is \: root \: of \:  {x}^{2}  + bx + c \\ so \\  { \alpha }^{2}  + b \alpha  + c = 0

We have to find

 \lim_{x \to \alpha }(1 +  {x}^{2} + bx + c )  {}^{\frac{1}{x -  \alpha } }  \:  \: \\  \\  take \: log \\  \\  \lim_{x \to \alpha } \frac{ log(1 +  {x}^{2} + bx + c ) }{x -  \alpha }  \\  \\  \:  \: use \:  \: l \: hopital \: (differentiate) \\  \\  \lim_{x \to \alpha } \frac{ \frac{2x + b}{1 +  {x}^{2} + bx + c } }{1}  \\  \\  =  \frac{2 \alpha + b }{1  + { \alpha }^{2 }  + b \alpha  + c}  \\  \\  = {2 \alpha  + b \over1 + 0}\\\\=\huge\red{2 \alpha  + b}

Similar questions