Math, asked by abc6885, 9 months ago

alpha beta are the zeros of the quadratic polynomial 2 X square + 5 x + K find the value of k such that alpha + beta whole square minus alpha beta is equal to 24.Its emergency please​

Answers

Answered by tharunstar85
4

\huge\boxed{\blue{-71/2}}

if \:  \alpha  \: and \: \beta \:  are  \: the \: zeros \: of \: {2x }^{2}  + 5x + k \\ such \: that \: { (\alpha  +  \beta) }^{2}  -  \alpha  \beta  = 24 \\  \alpha  +  \beta  =  \frac{  - b}{a}   \\ and \:  \alpha  \beta  =  \frac{c}{a} \\ here \: in \: the \: polynomial \: according \: to \:  {ax}^{2}  + bx + c  \\  a = 2 \:  \\ b =5 \\ c = k \\ so \: substituting \: the \: values  \\  \alpha  +  \beta  =   \frac{ - 5 }{2}   \: and \:  \alpha  \beta  =  \frac{k}{2}  \\ substituting \: this \: in \: our \: first \: equation \\ we \: get \:    { \frac{ (- 5)}{(2)} }^{2}  -  \frac{k}{2}  = 24 \\   \frac{ 25 - 2k}{4}   = 24  \:( because \: we \: take \: lcm)\\ 25 - 2k = 24 \times 4 \\ 25 - 2k = 96 \\ - 2k = 96 - 25 \\ k = \frac{71}{ - 2}  \\ thus \: k =  - \frac{71}{2}

\huge{\purple{Hope\: it \:helps}}

Similar questions