alpha,beta are zeroes of a quadratic polynomial x^2 - (k + 6)x + 2(2k - 1). Find the value of k if alpha + beta = 1/2alphabeta
Answers
Question:-
alpha,beta are zeroes of a quadratic polynomial x^2 - (k + 6)x + 2(2k - 1). Find the value of k if alpha + beta = 1/2alphabeta.
Answer:-
Here is your answer,
x^2 -(k+6)x + 2(2k-1)=0
Sum of zeroes = -b\/a
Alpha + beta = -[-(k+6)]\/1
=-(k+6)
Product of zeroes= c\/a
Alpha x beta = 2(2k-1)\/1
= 2(2k-1)
According to the question,
Alpha + beta = 1\/2 x alpha x beta
(k+6)=1\/2 x 2(2k-1)
k+6=2k-1
2k-k=6+1
k=7
┏─━─━─━∞◆∞━─━─━─┓
✭✮ӇЄƦЄ ƖƧ ƳƠƲƦ ƛƝƧƜЄƦ✮✭
┗─━─━─━∞◆∞━─━─━─┛
ǫᴜᴇsᴛɪᴏɴ :-
alpha,beta are zeroes of a quadratic polynomial x^2 - (k + 6)x + 2(2k - 1). Find the value of k if alpha + beta = 1/2alphabeta
ᴀɴsᴡᴇʀ :-
x^2 -(k+6)x + 2(2k-1)=0
Sum of zeroes = -b\/a
Alpha + beta = -[-(k+6)]\/1
=-(k+6)
Product of zeroes= c\/a
Alpha x beta = 2(2k-1)\/1
= 2(2k-1)
According to the question,
Alpha + beta = 1\/2 x alpha x beta
(k+6)=1\/2 x 2(2k-1)
k+6=2k-1
2k-k=6+1
k=7
┏─━─━─━∞◆∞━─━─━─┓
✭✮ʜᴇʀᴇ ɪs ʏᴏᴜ ᴀɴsᴡᴇʀ✮✭
┗─━─━─━∞◆∞━─━─━─┛