Math, asked by ishurawat09849, 1 month ago

alpha,beta,gamma are roots of x3-px2+qx-r=0 find value of [beta+ gamma- alpha)*(gamma+alpha-beta)*(alpha+ beta-gamma)​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{\alpha,\beta,\gamma\;are\;roots\;of\;x^3-p\,x^2+q\,x-r=0}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{(\beta+\gamma-\alpha)\;(\gamma+\alpha-\beta)\;(\alpha+\beta-\gamma)}

\underline{\textbf{Solution:}}

\mathsf{Since\;\alpha,\beta,\gamma\;are\;roots\;of\;x^3-p\,x^2+q\,x-r=0,\;we\;have}

\mathsf{\alpha+\beta+\gamma=p}

\mathsf{\alpha\beta+\beta\gamma+\gamma\alpha=q}

\mathsf{\alpha\,\beta\,\gamma=r}

\mathsf{Now,}

\mathsf{(\beta+\gamma-\alpha)\,(\gamma+\alpha-\beta)\,(\alpha+\beta-\gamma)}

\mathsf{=(\alpha+\beta+\gamma-2\,\alpha)\,(\gamma+\alpha+\beta-2\,\beta)\,(\alpha+\beta+\gamma-2\,\gamma)}

\mathsf{=(p-2\,\alpha)\,(p-2\,\beta)\,(p-2\,\gamma)}

\mathsf{=p^3-2(\alpha+\beta+\gamma)\,p^2+4(\alpha\beta+\beta\gamma+\gamma\alpha)\,p-8\,\alpha\beta\gamma}

\mathsf{=p^3-2(p)p^2+4(q)p-8r}

\mathsf{=p^3-2p^3+4pq-8r}

\mathsf{=-p^3+4pq-8r}

\mathsf{=-p^3+4pq-8r}

\implies\boxed{\boldmath{(\beta+\gamma-\alpha)\;(\gamma+\alpha-\beta)\;(\alpha+\beta-\gamma)=-p^3+4pq-8r}}

Answered by pavagadhidhyey2
0

\underline{\textbf{Given:}}

Given:

\mathsf{\alpha,\beta,\gamma\;are\;roots\;of\;x^3-p\,x^2+q\,x-r=0}α,β,γarerootsofx

3

−px

2

+qx−r=0

\underline{\textbf{To find:}}

To find:

\textsf{The value of}The value of

\mathsf{(\beta+\gamma-\alpha)\;(\gamma+\alpha-\beta)\;(\alpha+\beta-\gamma)}(β+γ−α)(γ+α−β)(α+β−γ)

\underline{\textbf{Solution:}}

Solution:

\mathsf{Since\;\alpha,\beta,\gamma\;are\;roots\;of\;x^3-p\,x^2+q\,x-r=0,\;we\;have}Sinceα,β,γarerootsofx

3

−px

2

+qx−r=0,wehave

\mathsf{\alpha+\beta+\gamma=p}α+β+γ=p

\mathsf{\alpha\beta+\beta\gamma+\gamma\alpha=q}αβ+βγ+γα=q

\mathsf{\alpha\,\beta\,\gamma=r}αβγ=r

\mathsf{Now,}Now,

\mathsf{(\beta+\gamma-\alpha)\,(\gamma+\alpha-\beta)\,(\alpha+\beta-\gamma)}(β+γ−α)(γ+α−β)(α+β−γ)

\mathsf{=(\alpha+\beta+\gamma-2\,\alpha)\,(\gamma+\alpha+\beta-2\,\beta)\,(\alpha+\beta+\gamma-2\,\gamma)}=(α+β+γ−2α)(γ+α+β−2β)(α+β+γ−2γ)

\mathsf{=(p-2\,\alpha)\,(p-2\,\beta)\,(p-2\,\gamma)}=(p−2α)(p−2β)(p−2γ)

\mathsf{=p^3-2(\alpha+\beta+\gamma)\,p^2+4(\alpha\beta+\beta\gamma+\gamma\alpha)\,p-8\,\alpha\beta\gamma}=p

3

−2(α+β+γ)p

2

+4(αβ+βγ+γα)p−8αβγ

\mathsf{=p^3-2(p)p^2+4(q)p-8r}=p

3

−2(p)p

2

+4(q)p−8r

\mathsf{=p^3-2p^3+4pq-8r}=p

3

−2p

3

+4pq−8r

\mathsf{=-p^3+4pq-8r}=−p

3

+4pq−8r

\mathsf{=-p^3+4pq-8r}=−p

3

+4pq−8r

\implies\boxed{\boldmath{(\beta+\gamma-\alpha)\;(\gamma+\alpha-\beta)\;(\alpha+\beta-\gamma)=-p^3+4pq-8r}}⟹

\boldmath(β+γ−α)(γ+α−β)(α+β−γ)=−p

3

+4pq−8r

Similar questions