Math, asked by Dhanushm00006, 1 year ago

alpha beta gamma are zeros of a cubic polynomial kx cube minus 5 x + 9 if Alpha Cube + beta cube plus gamma cube is equal to 27 find the value of k

Answers

Answered by Anonymous
112
heya...

Here is your answer it may help....☺☺
Attachments:

Anonymous: mark my answer as brainlest
Answered by mysticd
61

Answer:

\red {Value \: of \: k }\green {=-1}

Step-by-step explanation:

 Compare \: kx^{3}-0\times x^{2}-5x+9\:with\\ax^{3}+bx^{2}+ cx +d,\: we \: get

 a = k , \: b = 0,\: c = -5, \:d = 9

 Given \: \alpha , \: \beta \: and \: \gamma \\ar \: zeroes \: of \: cubic \: polynomial

 i)\blue { \alpha + \beta + \gamma} = \frac{-b}{a}

 = \frac{-0}{k}}

 \blue {= 0}\: ---(1)

 ii)\pink { \alpha \beta \gamma} = \frac{-d}{a}

 = \pink {\frac{-9}{k}}\:---(2)

 \alpha^{3} + \beta^{3}+\gamma^{3} = 27 \:(Given)

 \implies (\alpha + \beta + \gamma)[\alpha^{2} + \beta^{2} + \gamma^{2}-\alpha \beta - \beta \gamma - \gamma \alpha] + 3\alpha \beta \gamma  = 27

 \implies \blue {0} \times [\alpha^{2} + \beta^{2} + \gamma^{2}-\alpha \beta - \beta \gamma - \gamma \alpha] + 3\times \pink {\frac{-9}{k}} = 27

 [ from \: (1) \: and \: (2) ]

 \implies \frac{-27}{k} = 27

 \implies \frac{-27}{27} = k

 \implies \green { k = -1 }

Therefore.,

\red {Value \: of \: k }\green {=-1}

•••♪

Similar questions