Math, asked by akshDeep6839, 9 months ago

Alpha beta roots xsqare minus px plus q =0find alpha minus beta

Answers

Answered by Anonymous
2

AnSwer:-

The value of \bold{\tt{\alpha-\beta \ is \ \sqrt{p^{2}-4q^{2}}}}

Given:-

The given quadratic equation is

{x^{2}-px+q=0}

Roots are {\alpha \ and \ \beta}

To find:-

The value of \bold{\alpha-\beta}

SoLution:-

The quadratic equation is {x^{2}-px+b}

Here, a=1, b=-p and c=q

{\alpha+\beta=\frac{-b}{a}}

i.e {\alpha+\beta=p}....(1)

{\alpha\beta=\frac{c}{a}}

i.e. {\alpha\beta=q}....(2)

From identity

\bold{(a-b)^{2}=(a+b)^{2}-4ab}

From (1) and (2)

{(\alpha-\beta)^{2} =(\alpha+\beta)^{2}-4\alpha\beta}

{(\alpha-\beta)^{2}=p^{2}-4q^{2}}

On taking square root of both the answer

{\alpha-\beta=\sqrt{p^{2}-4q^{2}}}

The value of \bold{\tt{\alpha-\beta \ is \ \sqrt{p^{2}-4q^{2}}}}

Answered by TheSentinel
50

\color{darkblue}\underline{\underline{\boxed{\star{\sf Corrected \ Question:}}}} \\ \\

\rm{\alpha \ and \ \beta \ are \ the \ roots \ of \ a \ quadratic }

\rm{equation \ x^{2}-px+q=0}

\rm{Find \ \alpha \ - \ \beta.}

_________________________________________

\color{green}\underline{\underline{\boxed{\star{\sf Answer:}}}} \\ \\

\rm\pink{The \ value \ of \ \alpha \ - \ \beta :  \ \sqrt{p^{2}-4q^{2}}}

_________________________________________

\sf\large\underline\orange{Given:} \\ \\

\rm{The \  given \ quadratic \ equation \  is \ :}

{x^{2}-px+q=0}

\rm{The \ roots \ of \ the \ equation \ are \ \alpha \ and \ \beta}

_________________________________________

\sf\large\underline\green{To \ Find:} \\ \\

\rm{The \ value \ of \ \alpha-\beta}

_________________________________________

\color{red}\underline{\underline{\boxed{\star{\sf Solution:}}}} \\ \\

\rm{The \  quadratic \  equation \  is \  x^{2}-px+b=0} \\

\rm{We \ have,} \\

\rm{a=1 , \ b=-p, \ c=1 } \\

\rm{We \  Know} \\

\star{\alpha+\beta=\frac{-b}{a}}

\implies{\alpha+\beta=p}.................[a]

\star{\alpha\beta=\frac{c}{a}}

\implies{\alpha\beta=q}.....................[b]

\rm{(\alpha-\beta)^{2} =(\alpha+\beta)^{2}-4\alpha\beta}

\rm{................using \ (a-b)^{2}=(a+b)^{2}-4ab}

\rm{From \ equations \ [a] \ and \ [b]}

\therefore\rm{(\alpha-\beta)^{2}=p^{2}-4q^{2}}

\rm{Taking \ Square \ roots \ to \ the \ both \ sides} \\

\rm{We \ get,}

\implies{\alpha-\beta=\sqrt{p^{2}-4q^{2}}} \\

\rm{\purple{\boxed{\pink{\star{\bf{The \ value \ of \ \alpha-\beta \ is \ \sqrt{p^{2}-4q^{2}}}}}}}}

_________________________________________

\rm\purple{Hope \ it \ Helps \ :))}

Similar questions