Math, asked by kaurkulwant754, 11 months ago

alpha,bita,gamma r the zeroes of polnomia xcube+3xsqare+10x-24then find 1/alpha+1/bita+1/gamma

Answers

Answered by rishu6845
3

Answer---->

 \dfrac{1}{ \alpha }  +  \dfrac{1}{ \beta }   + \:  \dfrac{1}{ \gamma } =  -  \dfrac{5}{12}

Step-by-step explanation:

Given---->

 \alpha  \:  \beta  \: and \:  \gamma  \: are \: zeroes \: of \: given \: polynomial \\ p( \: x \: ) =  {x}^{3 } + 3x ^{2} + 10x - 24

To find ----->

value \: of

 \dfrac{1}{ \alpha }  +  \dfrac{1}{ \beta }  +  \dfrac{1}{ \gamma }

Concept used----->

if \:  \alpha  \:  \beta  \: and \:  \gamma  \: are \: zeroes \: of \: cubic \: polynomial \: then

 \alpha  +  \beta  +  \gamma  =  -  \dfrac{coefficient \: of \:  {x}^{2} }{coefficient \: of \:  {x}^{3} }

 \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \dfrac{coefficient \: of \: x}{coefficient \: of \: x ^{3} }

 \alpha  \beta  \gamma  =  -  \dfrac{constant \: term}{coefficient \: of \:  {x}^{3} }

Solution----> ATQ,

 {x}^{3 } + 3 {x}^{2} + 10x - 24

now \: zeroes \: of \: above \: polynomial \: are \:  \alpha  \:  \beta  \: and \:  \gamma so

 \alpha  +  \beta  +  \gamma  =  -  \dfrac{coefficient \: of \:  {x}^{2} }{coefficient \: of \:  {x}^{3} }

 \alpha  +  \beta  +  \gamma  =  -  \frac{3}{1}

 \alpha  +  \beta  +  \gamma  =  - 3

 \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \dfrac{coefficient \: of \: x}{coefficient \: of \:  {x}^{3} }

 \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \frac{10}{1}

 \alpha  \beta  \gamma  =  -  \dfrac{constant \: term}{coefficient \: of \:  {x}^{3} }

 \alpha  \beta  \gamma  =  -  \dfrac{ - 24}{1}

 \alpha  \beta  \gamma  = 24

Now \: we \: have \: to \: find \: value \: of

 \dfrac{1}{ \alpha } +  \dfrac{1}{ \beta } +  \dfrac{1}{ \gamma } =  \dfrac{ \alpha  +  \beta  +  \gamma }{ \alpha  \beta  \gamma }

 \:  \:  \:  \:  \:  =  \dfrac{ - 10}{24}

 \:  \:  \:  \:  =  \dfrac{ - 5}{12}

Similar questions