Alpha to the power 4 + beta to the power 4
Answers
Answered by
188
1) α^4 + β^4
=> (α²)² + (β²)²
=> (α² + β²)² - 2α²β² by using a² + b² = (a + b)² - 2ab
=> ((α + β)² - 2αβ)² - 2(αβ)² using the same identity again
We will now substitute the values of α + β and αβ we found in the beginning of the solution
=> ((-b/a)² - 2c/a)² - 2(c/a)²
=> (b²/a² - 2c/a)² - 2c²/a²
=> ((b² - 2ac)/a²)² - 2c²/a²
=> (b² - 2ac)²/a⁴ - 2c²/a²
=> ((b² - 2ac)² - 2a²c²) / a⁴
=> (b⁴ - 4ab²c + 4a²c² - 2a²c²) / a⁴
=> (b⁴ - 4ab²c + 2a²c²) / a⁴
=> (α²)² + (β²)²
=> (α² + β²)² - 2α²β² by using a² + b² = (a + b)² - 2ab
=> ((α + β)² - 2αβ)² - 2(αβ)² using the same identity again
We will now substitute the values of α + β and αβ we found in the beginning of the solution
=> ((-b/a)² - 2c/a)² - 2(c/a)²
=> (b²/a² - 2c/a)² - 2c²/a²
=> ((b² - 2ac)/a²)² - 2c²/a²
=> (b² - 2ac)²/a⁴ - 2c²/a²
=> ((b² - 2ac)² - 2a²c²) / a⁴
=> (b⁴ - 4ab²c + 4a²c² - 2a²c²) / a⁴
=> (b⁴ - 4ab²c + 2a²c²) / a⁴
nimojr:
thanks
Answered by
20
Answer:
((α + β)² - 2αβ)² - 2(αβ)²
Similar questions