alright gimme some questions regarding compound angles
cause I am out of station and I forgot to carry my EAMCET I have a very important exam I need practice :D
Answers
Answer:
hey watch this and tell is it was helpful
Step-by-step explanation:
The Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, well known both as a vital research tool and as a public relations boon for astronomy.
Step-by-step explanation:
Given that , In an Airthmetic Progression [ A.P. ] sum of it's n th terms is 3n²+5n & it's k th terms is 164 .
Exigency To Find : The value of k ?
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
\begin{gathered}\maltese\:\:\: \sf Let's \:say \:that \:, \:\pmb{\bf S_n } \: be \:the \:sum \:of \;n \:terms \:of \:an \:A.P\: & \:,\:\\ \sf \pmb{\sf a_n } \:be \: n^{th} \:term \:of \:an \:A.P \: \:[ \:Airthmetic \:Progression \:] \:\\\\\end{gathered}✠Let′ssaythat,SnSnbethesumofntermsofanA.PananbenthtermofanA.P[AirthmeticProgression],
Given that ,
Sum of n terms of an A.P is 3n²+5n .
\begin{gathered}\qquad \sf \therefore \;\: S_n \: = \: 3n^2 \: + \: 5n \: \\\\\qquad \dashrightarrow \:\sf \;\: S_n \: = \: 3n^2 \: + \: 5n \: \\\\\end{gathered}∴Sn=3n2+5n⇢Sn=3n2+5n
Therefore,
Sum of n - 1 terms of an Airthmetic Progression [ A.P. ] .
\begin{gathered}\qquad \sf \therefore \;\: S_{ n- 1 } \: = \: 3( n - 1 )^2 \: + \: 5( n - 1 ) \: \\\\\qquad \dashrightarrow \sf \;\: S_{ n- 1 } \: = \: 3( n - 1 )^2 \: + \: 5( n - 1 ) \: \\\\\qquad \dashrightarrow \sf \;\: S_{ n- 1 } \: = \: 3n^2 - \: n - 2 \: \\\\\end{gathered}∴Sn−1=3(n−1)2+5(n−1)⇢Sn−1=3(n−1)2+5(n−1)⇢Sn−1=3n2−n−2
Now ,
As , We know that ,
\begin{gathered}\qquad \dag\:\:\bigg\lgroup \sf{ a_n \: =\: S_n - \: S_{n-1} }\bigg\rgroup \\\\\qquad \dashrightarrow \sf a_n \: =\: S_n - \: S_{n-1} \:\:\\\\\end{gathered}†⎩⎪⎪⎪⎧an=Sn−Sn−1⎭⎪⎪⎪⎫⇢an=Sn−Sn−1
⠀⠀⠀⠀⠀⠀\begin{gathered}\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\end{gathered}⋆NowBySubstitutingtheknownValues:
\begin{gathered}\qquad \dashrightarrow \sf a_n \: =\: S_n - \: S_{n-1} \:\:\\\\\qquad \dashrightarrow \sf a_n \: =\: \Big\{ 3n^2 + 5n \:\Big\} - \: \Big\{ 3n^2 - n - 2 \Big\} \:\:\\\\\qquad \dashrightarrow \sf a_n \: =\: 3n^2 + 5n \: - \: 3n^2 + n + 2 \:\:\\\\\qquad \dashrightarrow \sf a_n \: =\: 6n + 2 \:\:\\\\\dashrightarrow \underline {\boxed{\pmb{\frak{\purple { a_n \: =\: 6n + 2 }}}}}\:\\\\\end{gathered}⇢an=Sn−Sn−1⇢an={3n2+5n}−{3n2−n−2}⇢an=3n2+5n−3n2+n+2⇢an=6n+2⇢an=6n+2an=6n+2
Therefore,
\sf k^{th}kth term will be 6k + 2 .
AND ,
In an Airthmetic Progression [ A.P. ] \sf k^{th}kth term is 164 .
\begin{gathered}\qquad \qquad \sf \leadsto \;\: a_k \: = \: 6k +2 \: \& ,\:\\\\\qquad \sf \leadsto \;\: a_k \: = \: 164 \: \\\\\qquad \sf \therefore \;\: 164 \: = \: 6k +2 \: \\\\\qquad \sf \dashrightarrow \;\: 164 \: = \: 6k +2 \: \\\\\qquad \sf \dashrightarrow \;\: 164 - 2 \: = \: 6k \: \\\\\qquad \sf \dashrightarrow \;\: 162 \: = \: 6k \: \\\\\qquad \sf \dashrightarrow \;\: k \: = \: \dfrac{162 }{6} \: \\\\\qquad \sf \dashrightarrow \;\: k \: = \: 27 \: \\\\\dashrightarrow \underline {\boxed{\pmb{\frak{\purple { k \: =\: 27 }}}}}\:\\\\\end{gathered}⇝ak=6k+2&,⇝ak=164∴164=6k+2⇢164=6k+2⇢164−2=6k⇢162=6k⇢k=6162⇢k=27⇢