Science, asked by adigoppulajyothi1005, 1 day ago

also record your er. Record observation regarding of melon or gourd flower as observations in the table given below. (You may flowers already collected by you earlier in this chapter). S.No. Name of the No. of Sepalss No. of Petals No. of Stamens No. of Pistii Flower (Calyx) (Corolla) (Andioecium)||(Gynoecium) 2) 5 14 Reproduction in Plan



Answers

Answered by CyberBeast
2

Explanation:

Solution−

Given integral is

\rm \: \displaystyle \int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right)d x∫

0

1

cot

−1

(1−x+x

2

)dx

We know that

\begin{gathered}\boxed{\tt{ \: {cot}^{ - 1}x = {tan}^{ - 1} \frac{1}{x} \: }} \\ \end{gathered}

cot

−1

x=tan

−1

x

1

So, using this, we get

\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{1}{1 - x + {x}^{2} } \bigg] d x=∫

0

1

tan

−1

[

1−x+x

2

1

]dx

\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{1 - x + x}{1 - x + {x}^{2} } \bigg] d x=∫

0

1

tan

−1

[

1−x+x

2

1−x+x

]dx

\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{(1 - x) + x}{1 - x(1 - x)} \bigg] d x=∫

0

1

tan

−1

[

1−x(1−x)

(1−x)+x

]dx

We know

\begin{gathered}\boxed{\tt{ \: {tan}^{ - 1} \frac{x + y}{1 - xy} = {tan}^{ - 1}x + {tan}^{ - 1}y \: }} \\ \end{gathered}

tan

−1

1−xy

x+y

=tan

−1

x+tan

−1

y

Answered by CyberBeast
1

Explanation:

Solution−

Given integral is

\rm \: \displaystyle \int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right)d x∫

0

1

cot

−1

(1−x+x

2

)dx

We know that

\begin{gathered}\boxed{\tt{ \: {cot}^{ - 1}x = {tan}^{ - 1} \frac{1}{x} \: }} \\ \end{gathered}

cot

−1

x=tan

−1

x

1

So, using this, we get

\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{1}{1 - x + {x}^{2} } \bigg] d x=∫

0

1

tan

−1

[

1−x+x

2

1

]dx

\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{1 - x + x}{1 - x + {x}^{2} } \bigg] d x=∫

0

1

tan

−1

[

1−x+x

2

1−x+x

]dx

\rm \: = \: \displaystyle \int_{0}^{1} \tan ^{-1}\bigg[\dfrac{(1 - x) + x}{1 - x(1 - x)} \bigg] d x=∫

0

1

tan

−1

[

1−x(1−x)

(1−x)+x

]dx

We know

\begin{gathered}\boxed{\tt{ \: {tan}^{ - 1} \frac{x + y}{1 - xy} = {tan}^{ - 1}x + {tan}^{ - 1}y \: }} \\ \end{gathered}

tan

−1

1−xy

x+y

=tan

−1

x+tan

−1

y

Similar questions