Math, asked by sonalijondhalekar199, 10 months ago

Altitude on the hypotenuse of a right angled triangle divides it in two parts of Length 16 cm and 9 cm Find length of the altitude​

Answers

Answered by Truebrainlian9899
166

  \large\orange \bigstar  \: \red{ \underline{ \underline{ \green{ \rm given : }}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rightarrow  \: \purple{1 \rm side \: of \: (h) = 16cm}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rightarrow  \: \purple{ \rm 2side \: of(h) = 9cm}

  \large\blue \bigstar  \: \orange{ \underline{ \underline{ \pink{ \rm solution : }}}}

\bigstar ABC right angle triangle is drawn in such a way that ∠ABC = 90° .

  • D is the point on side AC where BD ⊥ AC .

\rightarrow Also D divides the side length AC in two parts AD and DC of lengths 9cm and 16 cm respectively.

\large \: \green{ \underline{ \large{ \red{ \rm Now, }}}} from ∆ABD and ∆BDC

\rightarrow∠ADB = ∠BDC = 90°

\rightarrow∠BAD = ∠DBC ( see figure , if we assume ∠DBC = x°

\large \: \orange{ \underline{ \large{ \purple{ \rm then, }}}} DBA = 90 - x° then from ∆ABD , ∠BAD = x° )

   \bullet \:  \:   \green{ \boxed{ \red{from  \:  \: A - A  \:  \: similarity \:  \:  rule , </p><p>}}}

∆DAB ~ ∆DBC

so,

\rightarrowBD/DC = AD/BD

⇒BD² = DC × AD

= 16cm × 9 cm

  • taking square root both sides,

 \implies  \:  \sqrt{16}   \: \times  \:  \sqrt{9}

  \implies \: 4 \times 3

 \therefore \rm \large \boxed{BD = 12cm}

Hence ,

  \large \: \bigstar \:  \red{ \boxed{ \pink{ \boxed{ \blue{ \underline{ \green{altitude = 12cm }}}}}}}

Attachments:
Answered by pgadade496
1

Answer:

BD = 12 cm

Step-by-step explanation:

altitude = 12 cm

Similar questions