(am2+bm2
-bn2
-an2
) ÷ (m+n)
Answers
Answer:
Step-by-step explanation:
Hope it will help you.....
On dividing (am² + bm² - bn² - an²) by (m+n) we get (m - n)(a + b)
Given:
(am² + bm² - bn² - an²) ÷ (m+n)
Solution:
Here we have (am² + bm² - bn² - an²) ÷ (m+n)
Where (am² + bm² - bn² - an²) can be simplified as follows
=> (am² + bm² - bn² - an²)
=> (am² - an²+ bm² - bn²)
=> a(m² - n²) + b(m² - n²)
=> (m² - n²)(a + b)
Using algebraic identity (a² - b²) = (a + b)(a - b)
=> (m² - n²) = (m + n)(m - n)
=> (m² - n²)(a + b)
=> (m + n)(m - n)(a + b)
Hence, (am² + bm² - bn² - an²) ÷ (m+n)
= (m + n)(m - n)(a + b) ÷ (m+n)
= (m + n)(m - n)(a + b) / (m+n)
= (m - n)(a + b)
Therefore,
On dividing (am² + bm² - bn² - an²) by (m+n) we get (m - n)(a + b)
Learn more at
https://brainly.in/question/1312146
#SPJ2