Math, asked by nasreenjhan87, 1 month ago

Among the following, a correct statement is a) The additive identity under natural number is 0. The additive inverse of number '1' does not exist The multiplicative inverse of number *0' does not exist The multiplicative inverse of number 'l' does not exist X a X a.

Answers

Answered by Zahrah2008
3

Answer:

In mathematics, the additive inverse of a number a is the number that, when added to a, yields zero. This number is also known as the opposite (number),[1] sign change,[2] and negation.[3] For a real number, it reverses its sign: the additive inverse (opposite number) of a positive number is negative, and the additive inverse of a negative number is positive. Zero is the additive inverse of itself.

In mathematics, the additive inverse of a number a is the number that, when added to a, yields zero. This number is also known as the opposite (number),[1] sign change,[2] and negation.[3] For a real number, it reverses its sign: the additive inverse (opposite number) of a positive number is negative, and the additive inverse of a negative number is positive. Zero is the additive inverse of itself.The additive inverse of a is denoted by unary minus: −a (see also § Relation to subtraction below).[4][5] For example, the additive inverse of 7 is −7, because 7 + (−7) = 0, and the additive inverse of −0.3 is 0.3, because −0.3 + 0.3 = 0.

In mathematics, the additive inverse of a number a is the number that, when added to a, yields zero. This number is also known as the opposite (number),[1] sign change,[2] and negation.[3] For a real number, it reverses its sign: the additive inverse (opposite number) of a positive number is negative, and the additive inverse of a negative number is positive. Zero is the additive inverse of itself.The additive inverse of a is denoted by unary minus: −a (see also § Relation to subtraction below).[4][5] For example, the additive inverse of 7 is −7, because 7 + (−7) = 0, and the additive inverse of −0.3 is 0.3, because −0.3 + 0.3 = 0.Similarly, the additive inverse of a − b is −(a − b) which can be simplified to b − a. The additive inverse of 2x − 3 is 3 − 2x, because 2x − 3 + 3 − 2x = 0.[6]

In mathematics, the additive inverse of a number a is the number that, when added to a, yields zero. This number is also known as the opposite (number),[1] sign change,[2] and negation.[3] For a real number, it reverses its sign: the additive inverse (opposite number) of a positive number is negative, and the additive inverse of a negative number is positive. Zero is the additive inverse of itself.The additive inverse of a is denoted by unary minus: −a (see also § Relation to subtraction below).[4][5] For example, the additive inverse of 7 is −7, because 7 + (−7) = 0, and the additive inverse of −0.3 is 0.3, because −0.3 + 0.3 = 0.Similarly, the additive inverse of a − b is −(a − b) which can be simplified to b − a. The additive inverse of 2x − 3 is 3 − 2x, because 2x − 3 + 3 − 2x = 0.[6]The additive inverse is defined as its inverse element under the binary operation of addition (see also § Formal definition below), which allows a broad generalization to mathematical objects other than numbers. As for any inverse operation, double additive inverse has no net effect: −(−x) = x

Step-by-step explanation:

Helps you

Similar questions