Math, asked by vivekydv5698, 9 months ago

.
Among the numbers 2^250, 3^200, 4^150,5^100 the greatest number is
O 2^250
O 3^200
4^130
5^100

Answers

Answered by AkunthJain
16

Answer:

3^200

Step-by-step explanation:

2^250=(2^5)^50=32^50

3^200=(3^4)^50=81^50

4^150=(4^3)^50=64^50

5^100=(5^2)^50=25^50

Therefore, 3^200 is the greatest

Answered by pulakmath007
6

 \sf The  \: greatest  \: number \:  is  \:  \:  {3}^{200}

Given :

 \sf The  \:  numbers \:  \:   {2}^{250} ,  {3}^{200},  {4}^{150},   {5}^{100}

To find :

The greatest number is

 \sf  {2}^{250}

 \sf   {3}^{200}

 \sf    {4}^{150}

 \sf   {5}^{100}

Solution :

Step 1 of 3 :

Write down the given numbers

 \sf The  \:  numbers \:are \:   \:   {2}^{250} ,  {3}^{200},  {4}^{150},   {5}^{100}

Step 2 of 3 :

Rewrite the numbers with same power

 \sf {2}^{250}  =  {2}^{(5 \times 50)} =  {( {2}^{5} )}^{50}   =  {32}^{50}

 \sf {3}^{200}  =  {3}^{(4 \times 50)} =  {( {3}^{4} )}^{50}   =  {81}^{50}

 \sf {4}^{150}  =  {4}^{(3 \times 50)} =  {( {4}^{3} )}^{50}   =  {64}^{50}

 \sf {5}^{100}  =  {5}^{(2 \times 50)} =  {( {5}^{2} )}^{50}   =  {25}^{50}

Step 3 of 3 :

Find the greatest number

 \sf 81 > 64 > 32 > 25

\displaystyle \sf{ \implies {81}^{50}  >{64}^{50} > {32}^{50}  >   {25}^{50} }

\displaystyle \sf{ \implies {3}^{200}  >{4}^{150} > {2}^{250}  >   {5}^{100} }

 \sf The  \: greatest  \: number \:  is  \:  \:  {3}^{200}

Hence the correct option is  \sf   {3}^{200}

Similar questions