Math, asked by logso8149, 2 months ago

Amount = ₹5832
Principle = ₹5000
Time = 2 years
Rate=?
(Compound Interest)

Answers

Answered by Anonymous
223

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large \red{{ \fcolorbox{blue} {black}{ \underline{ \red{Rєquírєd \: αnѕwєr}}}}} \\ \\ \sf \red{Gívєn:- \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }

  • Amount , ( A ) = ₹ 5832
  • Principal , ( P) = ₹ 5000
  • Time , (n) = 2 year

As We Know that Formula of the Compound anually ;

 \sf \red{Amount = Principal(1+\frac{R}{100})^{n}}

 \sf{A/q}

\mapsto\sf{5832 = 5000\bigg(1+\dfrac{R}{100} \bigg)^{2}} \\

\mapsto\sf{\dfrac{5832}{5000}= \bigg(1+\dfrac{R}{100} \bigg)^{2}}

\mapsto\sf{\cancel{\dfrac{5832}{5000}}= \bigg(1+\dfrac{R}{100} \bigg)^{2}} \\

\mapsto\sf{\dfrac{2916}{2500}= \bigg(1+\dfrac{R}{100} \bigg)^{2}} \\

\mapsto\sf{\sqrt{\dfrac{2916}{2500} } = \bigg(1+\dfrac{R}{100} \bigg)} \\

\mapsto\sf{\dfrac{54}{50} = \bigg(1+\dfrac{R}{100} \bigg)}

\mapsto\sf{\dfrac{54}{50} - 1 = \dfrac{R}{100}}

\mapsto\sf{\dfrac{54-50}{50} = \dfrac{R}{100}}

\mapsto\tt{\dfrac{4}{50} = \dfrac{R}{100}}

\mapsto\sf{50R = 400}

\mapsto\sf{R=\cancel{ \frac{  400}{50}}}

\mapsto\sf{R=8\:\% \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\   \\  \sf \red{Thus, \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  } \\  \sf \red{The \: rate \: percent \: of \: compounded \: annually \:per  \:annum \:  will \: be \: 8 \: \%}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by mehakShrgll
2

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\large \red{{ \fcolorbox{blue} {black}{ \underline{ \red{Rєquírєd \: αnѕwєr}}}}} \\ \\ \sf \red{Gívєn:- \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }\end{gathered}  Rєquıˊrєd αnѕwєrGıˊvєn:−

Amount , ( A ) = ₹ 5832

Principal , ( P) = ₹ 5000

Time , (n) = 2 year

As We Know that Formula of the Compound anually ;

\sf \red{Amount = Principal(1+\frac{R}{100})^{n}}Amount=Principal(1+100R)n

\sf{A/q}A/q

\begin{gathered}\mapsto\sf{5832 = 5000\bigg(1+\dfrac{R}{100} \bigg)^{2}} \\ \end{gathered}↦5832=5000(1+100R)2

\mapsto\sf{\dfrac{5832}{5000}= \bigg(1+\dfrac{R}{100} \bigg)^{2}}↦50005832=(1+100R)2

\begin{gathered}\mapsto\sf{\cancel{\dfrac{5832}{5000}}= \bigg(1+\dfrac{R}{100} \bigg)^{2}} \\\end{gathered}↦50005832=(1+100R)2

\begin{gathered}\mapsto\sf{\dfrac{2916}{2500}= \bigg(1+\dfrac{R}{100} \bigg)^{2}} \\ \end{gathered}↦25002916=(1+100R)2

\begin{gathered}\mapsto\sf{\sqrt{\dfrac{2916}{2500} } = \bigg(1+\dfrac{R}{100} \bigg)} \\ \end{gathered}↦25002916=(1+100R)

\mapsto\sf{\dfrac{54}{50} = \bigg(1+\dfrac{R}{100} \bigg)}↦5054=(1+100R)

\mapsto\sf{\dfrac{54}{50} - 1 = \dfrac{R}{100}}↦5054−1=100R

\mapsto\sf{\dfrac{54-50}{50} = \dfrac{R}{100}}↦5054−50=100R

\mapsto\tt{\dfrac{4}{50} = \dfrac{R}{100}}↦504=100R

\mapsto\sf{50R = 400}↦50R=400

\mapsto\sf{R=\cancel{ \frac{ 400}{50}}}↦R=50400

\begin{gathered}\mapsto\sf{R=8\:\% \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: } \\ \\ \sf \red{Thus, \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: } \\ \sf \red{The \: rate \: percent \: of \: compounded \: annually \:per \:annum \: will \: be \: 8 \: \%}\end{gathered}↦R=8%Thus,Theratepercentofcompoundedannuallyperannumwillbe8%

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions