Math, asked by sahilnirwan4868, 1 month ago

Amount of simple interest accrued on an amount of ₹28500 in 7 years is ₹23940. What is the rate of interest p.a.?

Answers

Answered by Aryan0123
106

Answer :-

Rate of interest = 12 %

\\

Step-by-step explanation :-

Analysing the question,

Given:

  • Simple interest = ₹ 23940
  • Principal = ₹ 28500
  • Time period = 7 years

\\

To find:

Rate of interest per annum = ?

\\

Formula used:

 \maltese \:  \:   \boxed { \bf{SI =  \dfrac{PTR}{100}}} \\  \\

where:

  • SI is the Simple interest
  • P is the principal
  • T is the time period
  • R is the rate of interest

\\

Solution:

Applying the above formula and substituting the given values,

\hookrightarrow \:  \:  \sf{23940 =  \dfrac{28500 \times 7 \times R}{100} } \\  \\

 \dashrightarrow \:  \:  \sf{23940 =  \dfrac{285 \cancel{00} \times 7 \times R}{ \cancel{100}} } \\  \\

 \dashrightarrow \:  \:  \sf{285 \times 7 \times R = 23940} \\  \\

 \dashrightarrow \:  \:  \sf{1995 \times R = 23940} \\  \\

 \dashrightarrow \: \:  \sf{R =  \dfrac{23940}{1995} } \\  \\

 \dashrightarrow \:  \:  \sf{R = 12} \\  \\

 \therefore \boxed{ \underline{ \boldsymbol{Rate \: of \: interest = 12  \%}}} \\  \\

Answered by ItzMagician
722

Answer:

{\bigstar}\underline{\underline{\textsf{\textbf{ Given\::- }}}}

  • \leadsto Principle = Ra.285000
  • \leadsto Simple Interest = Rs.23940
  • \leadsto Time = 7 years

\begin{gathered}\end{gathered}

{\bigstar}\underline{\underline{\textsf{\textbf{ To Find\::- }}}}

  • \leadsto Rate of Interest per annumn

\begin{gathered}\end{gathered}

{\bigstar}\underline{\underline{\textsf{\textbf{ Using Formula\::- }}}}

\begin{gathered}  \dag\underline{\boxed{\boxed{\sf{S.I = \dfrac{PTR}{100}}}}}\end{gathered}

Where

  • \leadsto S.I = Simple Interest
  • \leadsto P = Principle
  • \leadsto T = Time
  • \leadsto R = Rate of Interest

\begin{gathered}\end{gathered}

{\bigstar}\underline{\underline{\textsf{\textbf{ Solution\::- }}}}

\begin{gathered} \dashrightarrow {\sf{S.I = \dfrac{P \times T \times R}{100}}}\end{gathered}

  • Substituting the all given values

\begin{gathered} \dashrightarrow {\sf{23940 = \dfrac{28500 \times 7 \times R}{100}}}\end{gathered}

\begin{gathered} \dashrightarrow {\sf{23940 = \dfrac{199500\times R}{100}}}\end{gathered}

\begin{gathered} \dashrightarrow {\sf{23940} = \dfrac{{\cancel{199500}}\times R}{\cancel{100}}}\end{gathered}

\begin{gathered} \dashrightarrow {\sf{23940} = {1995}\times R}\end{gathered}

\begin{gathered} \dashrightarrow {\sf{\frac{23940}{1995}}= {R}}\end{gathered}

\begin{gathered} \dashrightarrow {\sf{\cancel{\frac{23940}{1995}}}= {R}}\end{gathered}

\begin{gathered} \dashrightarrow {\sf{12= R}}\end{gathered}

\begin{gathered} \bigstar\underline{\boxed{\sf{R = 12\%}}}\end{gathered}

\therefore{\underline{\sf{\red{The \:  Rate  \: of  \: Interest  \: is \:  12 \%}}}}

\begin{gathered}\end{gathered}

{\bigstar}\underline{\underline{\textsf{\textbf{ Learn More\::- }}}}

\small\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \dag \: \underline{\bf{More \: Useful \: Formula}}\\ {\boxed{\begin{array}{cc}\dashrightarrow {\sf{Amount = Principle + Interest}} \\ \\ \dashrightarrow \sf{ P=Amount - Interest }\\ \\ \dashrightarrow \sf{ S.I = \dfrac{P \times R \times T}{100}} \\ \\ \dashrightarrow \sf{P = \dfrac{Interest \times 100 }{Time \times Rate}} \\ \\ \dashrightarrow \sf{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}} \\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions