Math, asked by hardika55, 3 months ago

& From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm, a conical cavity of the
same height and same diameter is hollowed out. Find the total surface area of the
remaining solid to the nearest cm.

Answers

Answered by Anonymous
31

\huge\red{{\fcolorbox{blue}{aqua}{\underline{\red{Aηsωεя}}}}}

Your correct answer is in attachment.

Volume of a cuboid = (length × breadth × height) cubic units.

= (l × b × h) cubic units.

   (Since area = ℓ × b)

Volume of a cuboid = area of one surface × height cubic units

Let us look at the given cuboid.

The length of the cuboid = 5 cm

The breadth of the cuboid = 3 cm

The height of cuboid (thickness) = 2 cm

The number of 1 cm cubes in the given cuboid = 30 cubes = 5 × 3 × 2

We find that volume of the given cuboid with length 5 cm, breadth 3 cm and height 2 cm is 30 cu cm.

 \huge \sf\red{learn \: more}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

Attachments:
Answered by mittalsapna19
11

Answer:

Refer to attachment

Step-by-step explanation:

Hope it will help you ....

Attachments:
Similar questions