Math, asked by arunareddyk, 19 days ago

&I=PXRYT RI year 100 Find the compound interest on the following:principal =₹ 5000 rate%=10% number of years=2​

Answers

Answered by Anonymous
3

Answer:

Given :

  • ➝ Principle = Rs.5000
  • ➝ Rate of Interest = 10%
  • ➝ Time = 2 years

\begin{gathered}\end{gathered}

To Find :

  • ➝ Compound Interest

\begin{gathered}\end{gathered}

Concept :

➝ Here we have given that the Principal is Rs.500, Time is 2 years and Rate is 10 p.c.p.a. As we know that to find the compound interest we need amount. So firstly we will find out the amount.

➝ After finding the Amount we will find out the Compound interest by substituting the values in the formula.

\begin{gathered}\end{gathered}

Using Formulas :

\longrightarrow\small{\underline{\boxed{\sf{A= P\bigg[1 + \dfrac{ {R}}{100} \bigg]^{T}}}}}

\longrightarrow\small{\underline{\boxed{\sf{{C.I=A- P}}}}}

Where :

  • ➟ A = Amount
  • ➟ P = Principle
  • ➟ R = Rate
  • ➟ T = Time
  • ➟ C.I = Compound Interest

\begin{gathered}\end{gathered}

Solution :

Finding the amount by substituting the values in the formula :

{\implies{\sf{A= P\bigg[1 + \dfrac{ {R}}{100} \bigg]^{T}}}}

{\implies{\sf{A= 5000\bigg[1 + \dfrac{10}{100} \bigg]^{2}}}}

{\implies{\sf{A= 5000\bigg[ \dfrac{(1 \times 100) + (10 \times 1)}{100} \bigg]^{2}}}}

{\implies{\sf{A= 5000\bigg[ \dfrac{(100) + (10)}{100} \bigg]^{2}}}}

{\implies{\sf{A= 5000\bigg[  \: \dfrac{110}{100}  \: \bigg]^{2}}}}

{\implies{\sf{A= 5000\bigg[  \: \cancel{\dfrac{110}{100}}  \: \bigg]^{2}}}}

{\implies{\sf{A= 5000\bigg[  \: \dfrac{11}{10}  \: \bigg]^{2}}}}

{\implies{\sf{A= 5000\bigg[ \dfrac{11}{10} \times  \dfrac{11}{10} \bigg]}}}

{\implies{\sf{A= 5000\bigg[  \dfrac{11 \times 11}{10 \times 10} \bigg]}}}

{\implies{\sf{A= 5000\bigg[  \:  \dfrac{121}{100} \:  \bigg]}}}

{\implies{\sf{A= 5000 \times  \dfrac{121}{100}}}}

{\implies{\sf{A= \cancel{5000} \times  \dfrac{121}{\cancel{100}}}}}

{\implies{\sf{A= 50  \times 121}}}

{\implies{\sf{A= Rs.6050}}}

\bigstar \: \underline{\boxed{\sf{\purple{A= Rs.6050}}}}

Hence, the amount is Rs.6050

Finding the compound interest by the values in the formula :

{\implies{\sf{C.I=A- P}}}

{\implies{\sf{C.I=6050 - 5000}}}

{\implies{\sf{C.I=Rs.1050}}}

\bigstar \: \underline{\boxed{\sf{\purple{C.I=Rs.1050}}}}

Hence, the compound interest is Rs.1050.

\begin{gathered}\end{gathered}

Learn More :

»» Principal: Money which is taken or given in the form of loan. That's called the principal. It is denoted by P.

»» Time: The period for which the loan is taken or given is called time. It is expressed by T or t.

»» Rate: The rate at which interest is charged or paid is called interest rate. It is denoted by r or R.

»» Interest: In addition to the principal amount, which is refunded, interest is paid. It is denoted by I.

»» Amount: For example, money taken is called principal and money returned is called compound.

\longrightarrow\small{\underline{\boxed{\sf{\red{ Simple \: Interest = \dfrac{P \times R \times T}{100}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{Amount = Principle + Interest}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{ Principle=Amount - Interest }}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{Principle = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{Principle = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{Rate = \dfrac{Simple \: Interest \times 100}{Principle \times Time}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{Time = \dfrac{Simple \: Interest \times 100}{Principle \times Rate}}}}}}

{\rule{220pt}{2.5pt}}

Answered by shiwkishor
0

Step-by-step explanation:

Enclosure provides the solution.

Attachments:
Similar questions