Math, asked by skar99623, 5 hours ago

amplitude complex number of -√3+i is

please help I'll mark brainliest​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\: -  \sqrt{3}  + i

Let we assume that

\rm :\longmapsto\: -  \sqrt{3}  + i  = r(cos\theta  + isin\theta )

can be rewritten as

\rm :\longmapsto\: -  \sqrt{3}  + i  = rcos\theta  + i \: r \: sin\theta

On comparing Real and Imaginary parts, we have

\rm :\longmapsto\:r \: cos\theta  =  -  \sqrt{3}  -  -  - (1)

and

\rm :\longmapsto\:r \: sin\theta  = 1 -  -  -  - (2)

On squaring equation (1) and (2) and adding, we get

\rm :\longmapsto\: {r}^{2} {cos}^{2}\theta  +  {r}^{2} {sin}^{2}\theta  = 3 + 1

\rm :\longmapsto\: {r}^{2} ({cos}^{2}\theta  + {sin}^{2}\theta ) = 4

\rm :\longmapsto\: {r}^{2} = 4

\bf\implies \:r = 2

On substituting the value of r in equation (1) and (2), we get

\rm :\longmapsto\:cos\theta  =  - \dfrac{ \sqrt{3} }{2}

and

\rm :\longmapsto\:sin\theta  = \dfrac{1}{2}

\bf\implies \:\theta  \: lies \: in \:  {2}^{nd}  \: quadrant

\bf\implies \:\theta  = \pi - \dfrac{\pi}{6}

\bf\implies \:\theta  =  \dfrac{5\pi}{6}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Short cut trick to find amplitude or argument of complex number

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \1sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Answered by Diliptalapda
0

Step-by-step explanation:

 \mathtt{ \implies -  \sqrt{3}  + i}

\mathtt{ \implies  \frac{1}{2}[ -  \frac{ \sqrt{3} }{2}  + i \frac{1}{2} ] }

 \mathtt{ \implies \frac{1}{2}[ \cos( \frac{5\pi}{6} ) + i \sin(x) \frac{5\pi}{6}   ] }

 \mathtt{ \implies \: amp( -  \sqrt{3}  + i)} =  \frac{5\pi}{6}

hope it help you.

Similar questions