Physics, asked by crao77572, 3 months ago

an
15. Two equal forces 10 N each act at right angles to each other
Find the magnitude and direction of the resultant If that
produces the same effect as the two forces.
(Ans : 14.42, 45°N
116. A single force of 10 N is resolved into two concurrent forces of
6 N each. Find the angle between them.
(Ans : 67" 6' 1
7. The resultant of two given forces is equal to each of the forces,
Find the angle between them.
(Ans : 120°)
Convert the force of 10 kg into Newton. (April/May. 2015)​

Answers

Answered by ishu3697
0

Answer:

ans 120

hope this is brainlist

mark as brainlist

Answered by Anonymous
0

\green{\tt{\therefore{Simple\:Interest=432\:rupees}}}

Given :-

  •  \sf  Compound \: Interest(C.I) = 246 \: rupees

  •  \sf Time(t) = 2 \: years

  •    \sf Rate\% = 5\%

To Find :-

  •  \sf Simple \: Interest(S.I) = ?

Solution :-

\small\underline{\pmb{\sf \:According \: to \: the \: question :-}}

\qquad\leadsto\quad \sf \green{C.I= A - p }\\

\qquad\leadsto\quad \sf 246 = A - p \\

 \qquad\leadsto\quad\sf A = 246 + p \\

 \qquad\leadsto\quad\sf A= p(1 +  \frac{r}{100} )^{t}\\

 \qquad\leadsto\quad\sf  246 + p = p \times (1 +  \frac{5}{100} )^{2} \\

 \qquad\leadsto\quad\sf 246  + p = p \times (1 + 0.05)^{2} \\

\qquad\leadsto\quad\sf \sf 246 + p  = p \times 1.1025\\

\qquad\leadsto\quad\sf\sf 246 = 1.1025p - p\\

 \qquad\leadsto\quad\sf   246 = 0.1025p\\

 \qquad\leadsto\quad\sf   p =  \frac{246}{0.1025} \\

\green{ \qquad\leadsto\quad \sf p = 2400 \: rupees} \\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad ☀️  \sf Principal = 2400 \: rupees\\

\qquad ☀️ \sf Rate\% = 6\%\\

\qquad ☀️ \sf Time = 3 \: years  \\

\small\underline{\pmb{\sf \:Putting  \: the \: values  :-}}

 \qquad\leadsto\quad\sf \pink{S.I=  \frac{p \times r \times t}{100}}  \\

 \qquad\leadsto\quad\sf  S.I=  \frac{2400 \times 6 \times 3}{100} \\

 \qquad\leadsto\quad\sf   S.I = 24 \times 6 \times 3 \\

 \qquad\leadsto\quad\sf \pink{\sf S.I = 432 \: rupees}\\\\

\therefore\:\underline{\textsf{Simple interest is  \textbf{ 432 \: rupees}}}.\\\\

Similar questions