Math, asked by vandanpatel13, 10 months ago

an=25,d=2
Sn = 120 so find the n
and a .​

Answers

Answered by Anonymous
1

Answer:

2 possiblities,

a= -13, n=20

a= 15 , n=6

Step-by-step explanation:

an=a+(n-1)d=25

=>a+(n-1)2=25

=>a+2n-2=25

=>a+2n=27

=>a+n+n=27

=>a+n=27-n   .......(1)

Sn=(n/2)(2a+(n-1)d)=120

=>(n/2)(2a+(n-1)2)=120

=>(n/2)x2(a+n-1)=120

=>n(a+n-1)=120  . .......(2)

putting value of (a+n) from (1) in (2), we get

=>n(27-n-1)=120

=>n(26-n)=120

=>26n-n²=120

=>n²-26n+120=0

=>n²-20n-6n+120=0

=>n(n-20)-6(n-20)=0

=>(n-6)(n-20)=0

=>n=6 or n=20

for n=6,

a+2n=27

=>a=27-2n

=>a=27-12

=>a=15

for n=20,

a=27-2n

=>a=27-40

=>a= -13

HOPE IT HELPS,

PLEASE THANK, FOLLOW AND MARK AS BRAINLIEST.

Answered by BrainlyPopularman
4

GIVEN :

  \\  \:  \: { \huge{.}} \:  \: { \bold{ a_{n} = 25}} \\

  \\  \:  \: { \huge{.}} \:  \: { \bold{ d=2}} \\

  \\  \:  \: { \huge{.}} \:  \: { \bold{ S_{n} = 120}} \\

TO FIND :

  \\  \:  \: { \huge{.}} \:  \: { \bold{a=?}} \\

  \\  \:  \: { \huge{.}} \:  \: { \bold{n=?}} \\

SOLUTION :

We know that –

  \\  \dashrightarrow { \bold{ a_{n} = a + (n -1)d}} \\

• Put the values –

  \\  \implies { \bold{25= a + (n -1)2}} \\

  \\  \implies { \bold{25= a +2n -2}} \\

  \\  \implies { \bold{a = 27 - 2n \:  \:  \:  \:  -  -  -  - eq.(1)}} \\

▪︎ And –

  \\  \dashrightarrow { \bold{ S_{n} = \dfrac{n}{2} \{a + a_n \}}} \\

• So –

  \\  \implies { \bold{ 120 = \dfrac{n}{2} \{a +25\}}} \\

  \\  \implies { \bold{240 =n \{a +25\}}} \\

• Using eq.(1) –

  \\  \implies { \bold{240 =n \{27 - 2n +25\}}} \\

  \\  \implies { \bold{240 =n (52 - 2n )}} \\

  \\  \implies { \bold{240 =52n - 2 {n}^{2}}} \\

  \\  \implies { \bold{2 {n}^{2}  - 52n + 240 =0}} \\

  \\  \implies { \bold{{n}^{2}  - 26n + 120 =0}} \\

  \\  \implies { \bold{{n}^{2}  - 20n  - 6n+ 120 =0}} \\

  \\  \implies { \bold{n(n -20) - 6(n - 20) =0}} \\

  \\  \implies { \bold{(n - 6)(n -20)=0}} \\

  \\  \implies \large{ \boxed{ \bold{n = 6 \: ,\: 20}}} \\

• Using eq.(1) –

  \\  \implies \large{ \boxed{ \bold{a = 15 \: ,\:  - 13}}} \\

Similar questions