An= 4 , d= 2 , sn= -14 .. find n and a
Answers
Answer:
n = 7 , a = -8
Step-by-step explanation:
Formula used = an= a+(n-1)d
an =a+(n-1)×d
=> 4 = a + ( n - 1 ) × 2
=> 4 = a + 2n -2
=> 4 + 2 = a + 2n
=> a + 2n = 6 .
=> a = 6 - 2x
=> a = 6 - 2x
=> sn = [ 2a + ( n - 1 ) × d ]
=> -14 = [2a + ( n - 1 ) × 2 ]
=> -28 = n ( 2a + 2n - 2)
=> - 28 = n [ 2 ( 6 - 2n ) + 2n - 2 ]
=> -28 = n ( 10 - 2n )
=> - 28 = 10 x - 2n
=> - 2n^2 +10 x +28 = 0 .
=> n ^2 - 5n - 14 = 0.
=> n^2- 7 n + 2 n -14 = 0
=>n(n - 7 ) + 2( n- 7) = 0
=> ( n - 7) (n + 2) = 0
=> x - 7 = 0
- x = +7
=> x + 2 = 0
- x = -2
so , n = 7 as 2 is in negitive .
- a = 6 - 2n .
- a = 6 - 2 × 7
- a = 6 - 14
- a = -8 .
.....Hope this will help u .....
Answer:
a= -8 and n=7
Step-by-step explanation:
an=a+(n-1)d
=> 4=a+(n-1)2
=> 4=a+2n-2
=> 4+2=a+2n
=> 6=a+2n
=> a= 6-2n-------(1)
sn=n/2[2a+(n-1)d
=> -14=n/2[2a+(n-1)2]
=> -14*2=n(2a+2n-2)
=> -28=n(2a+2n-2)
=> -28=n[2(6-2n)+2n-2]...............from equation (1)
=> -28=n(12-4n+2n-2)
=> -28=n(-2n+10)
=> -28= -2n^2+10n
=> 2n^2-10n-28=0
=> 2(n^2-10n-14)=0
=> n^2-5n-14=0
=> n^2-7n+2n-14=0
=> n(n-7)+2(n-7)=0
=> (n-7)(n+2)=0
=> n-7=0
=> n=7
and... n+2=0
n= -2
n=7 and -2
n will not be negative
so, n=7
put the value n in equation.... (1)
a=6-2n
a=6-2*7
a=6-14
a= -8
hence, a= -8 and n=7 answer