Math, asked by urkalmani321, 11 months ago

An A.P having 50 terms, in which if the sum of first ten terms is 210 and the sum of last fifteen terms is 2565 find ap​

Answers

Answered by Anonymous
58

Solution :-

Sum of first 10 terms = S₁₀ = 210

Using sum of n terms of an AP formula

Sₙ = n/2 (2a + (n - 1)d )

⇒ S₁₀ = 10/2 (2a + (10 - 1)d )

⇒ 210 * 2/10 = 2a + 9d

⇒ 42 = 2a + 9d --- eq(1)

Sum of last 15 terms S₁₅ = 2565

Sum of n terms of an AP = Sₙ = n/2(a + l)

Sum of last 15 terms of an AP = S₁₅ = 15/2(a₃₆ + a₅₀)

[ Because here, First term a = a₃₆ and last term l = a₅₀ ]

⇒ 2565 = 15/2 (a + 35d + a + 49d)

⇒ 2565 * 2/15 = 2a + 84d

⇒ 342 = 2a + 84d --- eq(1)

Subtracting equation (1) from equation (2)

⇒ 342 - 42 = 2a + 84d - 2a - 9d

⇒ 300 = 75d

⇒ 300/75 = d

⇒ 4 = d

Substituting d = 4 in eq(1)

⇒ 2a + 9d = 42

⇒ 2a + 9(4) = 42

⇒ 2a + 36 = 42

⇒ 2a = 42 - 36

⇒ 2a = 6

⇒ a = 6/2 = 3

General form of AP : a, a + d, a + 2d, a + 3d,....

Therefore the AP is 3, 7, 11, 15,....

Answered by EliteSoul
306

Answer:

{\underline{\boxed{\sf\green{AP = 3,7, 11, 15,19,...........}}}}

Step-by-step explanation:

\frak{Given:-}\begin{cases}\sf\green{A.P. \: has = 50 \: terms}\\\sf\red{Sum \: of \: 1st\:10\:terms = 210}\\\sf\blue{Sum\: of \: last \: 15 \: terms = 2565}\\\sf\purple{A.P. = ?}\end{cases}

At first,

Sum of 1st 10 terms = 210

We know sum of nth term of an AP,

{\underline{\boxed{\sf\blue{{S}_{n} = \dfrac{n}{2}[2a +  (n-1)d] }}}}

\Rightarrow\sf {S}_{10} = \dfrac{10}{2}[2a + (10 - 1)d] \\\\\Rightarrow\sf 210 = 5 [2a + 9d] \\\\\Rightarrow\sf 2a + 9d =\cancel{\dfrac{210}{5}} \\\\\Rightarrow\sf 2a + 9d = 42 .........(i)

\rule{200}{1}

Now,sum of last 15 terms = 2565.

We know formula for sum of nth term of an AP having the last few terms,

{\underline{\boxed{\sf\green{{S}_{n} =\dfrac{n}{2} (a + L) }}}}

Last 15 terms among 50 terms = (36 - 50)

\sf Where, a = {a}_{36} \: \& \: L ={a}_{50}

\Rightarrow\sf {S}_{15} = \dfrac{15}{2} ({a}_{36} + {a}_{50}) \\\\\Rightarrow\sf 2565 = \dfrac{15}{2} [a + (36-1)d + a +(50-1)d] \\\\\Rightarrow\sf 2565 = \dfrac{15}{2} (a + 35d + a + 49d) \\\\\Rightarrow\sf 2565 \times 2 = 15(2a + 84d) \\\\\Rightarrow\sf 5130 = 15(2a + 84d) \\\\\Rightarrow\sf 2a + 84d =\cancel{\dfrac{5130}{15}} \\\\\Rightarrow\sf 2a + 84d = 342........(ii)

Now, by substracting (ii) from (i):-

\Rightarrow\sf \cancel{2a} + 9d - \cancel{2a} - 84d = 42 - 342 \\\\\Rightarrow\sf -7 5d = -300 \\\\\Rightarrow\sf d =\cancel{\dfrac{-300}{-75}} \\\\\Rightarrow{\boxed{\sf\blue{ d = 4 }}}

\rule{300}{1}

Putting value of d in (ii) we get:-

\Rightarrow\sf 2a + 84\times 4 = 342 \\\\\Rightarrow\sf 2a + 336 = 342 \\\\\Rightarrow\sf 2a = 342 - 336 \\\\\Rightarrow\sf 2a = 6 \\\\\Rightarrow\sf a =\cancel{\dfrac{6}{2}} \\\\\Rightarrow{\boxed{\sf\green{ a  = 3}}}

We know terms of an AP :-

\sf \green{a, a + d , a + 2d , a + 3d,.......}

{\underline{\boxed{\therefore{\sf\purple{AP = 3, 7, 11, 15,............}}}}}


Anonymous: Awesome
Similar questions