Physics, asked by Saifar, 1 year ago

An accelerating dv/dt=1m/s^2 is taking turn maximum possible speed vmax on a rough coefficient of friction is 0.2 horizontal circular path of radius R=10m.The value of vmax is and take g=10m/s^2


Answers

Answered by shailendrachoubay216
1

Maximum possible turning speed V_{max}=4.16(\frac{m}{s})

Explanation:

When a particle is moving along curved path, it have tangential acceleration(a_{T}) and radial acceleration(a_{n})

1. Tangential acceleration a_{T}= 1(\frac{m}{s^{2}}) is given

2. Radial acceleration a_{n}= (\frac{V_{max}^{2}}{R})

3. Total acceleration a=\sqrt{a_{T}^{2}+a_{n}^{2}}

4. Then inertia force (F) = mass × acceleration

                   So F= ma          ...1)

5. Now this inertia force is balance by friction force

F=F_{f}      ...2)

 where friction force F_{f} = \mu \times mg    ...3)

       

6. From equation 1, equation 2 and equation 3

m\times \sqrt{a_{T}^{2}+a_{n}^{2}} = \mu \times mg

\sqrt{a_{T}^{2}+a_{n}^{2}} = \mu \times g

\sqrt{1^{2}+a_{n}^{2}} = \0.2 \times 10

So a_{n}^{2} =3

7. On putting value radial acceleration, we got

  \frac{V_{max}^{4}}{100}= 3

on solving V_{max}=4.16(\frac{m}{s})

   

Similar questions