Math, asked by shumailanizam9069, 9 months ago

An aeroplane flies from the ground making an angle of 30° with the ground and covers a distance of 184 m. What will be the height of the aeroplane above the ground?

Answers

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Height\:of\:aeroplane\:above\:the\:ground=92\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}}   \\  \tt:  { \implies Distance\:travelled\:by\:aeroplane=184\:m}\\\\ \tt:\implies Angle\:of\:elevation=30\degree\\\\  \red{\underline \bold{To \: Find:}} \\  \tt:  {\implies Height\: of \:aeroplane\:above\:the\:ground= ?}

• According to given question :

 \circ \:  \tt{Let \: Height\: of\:aeroplane\:from\:the\:ground \:   be\: h } \\  \\  \bold{As \: we \: know \: that} \\  \tt: {\implies sin \:  \theta=  \frac{Perpendicular}{Hypotenuse}  }\\  \\  \tt:{  \implies sin\:30\degree =  \frac{h}{184}}\\\\ \tt:{\implies \frac{1}{2}=\frac{h}{184} }

 \tt:  \implies  \frac{1}{ 2 } \times 184 = h \\  \\  \tt:   \implies  \frac{184}{2}  = h

 \tt: { \implies  92 = h }\\ \\ \green{\tt:  \implies  h =  92\:m} \\  \\   \green{\tt {\therefore Height \: of\: aeroplane \: above \:  the\:ground\:is 92 \:m}}

 \blue{ \bold{Some \: property \: of \: trigonometery}} \\   \orange{\tt {\circ \: sin  \: \alpha =  \frac{Perpendicular}{Hypotenuse}} } \\  \\   \orange{\tt{ \circ \: cos \: \alpha =  \frac{Base}{Hypotenuse}} } \\  \\    \orange{\tt{ \circ \: cot \: \alpha =  \frac{Base}{Hypotenuse}} } \\  \\   \orange{\tt {\circ \: cosec \:  \alpha  =  \frac{Hypotenuse}{Perpendicular} }} \\  \\ \orange{\tt {\circ \: sec \:  \alpha  =  \frac{Hypotenuse}{Base} }}

Answered by MarshmellowGirl
13

 \large \underline{ \blue{ \boxed{ \bf \green{Required \: Answer}}}}

Attachments:
Similar questions