Physics, asked by skmadarvali2130, 6 months ago

An aeroplane flying at horizontal at an altitude of 490 metres with a speed of 180 km per hour drops a bomb

Answers

Answered by BrainlyRonaldo
54

Correct question

An aeroplane flying horizontally at an altitude of 490 m with a speed of 180 kmph drops a bomb. The horizontal distance at which it hits the ground is

Given

An aeroplane flying horizontally at an altitude of 490 m with a speed of 180 kmph drops a bomb

To Find

The horizontal distance at which it hits the ground is

Solution

Calculating "Time of flight"

We know that

\rm \longrightarrow T=\sqrt{\dfrac{2h}{g}}

Here

  • T = Time of flight
  • h = Height
  • g = acceleration due to gravity

Given that

An aeroplane flying horizontally at an altitude of 490 m with a speed of 180 kmph drops a bomb

Hence

  • h = 490 m

We know that

  • g = 9.8 m/s²

Substituting the values

We get

\rm \longrightarrow T=\sqrt{\dfrac{2 \times 490}{9.8}} \ s

\rm \longrightarrow T=\sqrt{\dfrac{980}{9.8}} \ s

\rm \longrightarrow T=\sqrt{100} \ s

\rm \longrightarrow T=10 \ s

Calculating "Horizontal distance"

We know that

\rm \longrightarrow R=vT

Here

  • R = Horizontal distance
  • v = velocity
  • T = Time of flight

According the question

We are asked to find the horizontal distance

Therefore

We must find "R"

Given that

An aeroplane flying horizontally at an altitude of 490 m with a speed of 180 kmph drops a bomb

Hence

  • v = 180 kmph = 50 m/s

We found out that

  • T = 10 s

Substituting the values

We get

\rm \longrightarrow R=50 \times 10 \ m

Therefore

\rm \longrightarrow R=500 \ m

Hence

Horizontal distance = 500 m

Answered by Anonymous
172

Given :

  • speed of the airplane = 18 kph

  • it's altitude = 490 meter 

To Find :

  • Find the time and distance

Solution :

   \\  \\ :  \implies \:  \:  \: \:  \:  \:  \boxed{ \sf \:s= ut + \frac{1}{2}  a {t}^{2} }

Substitute all values :

\\  \\ :  \implies \:  \:  \: \:  \:  \:  \sf \:490= 0 + \frac{1}{ \cancel{2}}  \times  \cancel{9.8} \times  {t}^{2}  \\  \\  \\   :  \implies \:  \:  \: \:  \:  \:  \sf \:490 = 4.9 {t}^{2}  \\  \\  \\   :  \implies \:  \:  \: \:  \:  \:  \sf \:{t}^{2}  =   \cancel{\frac{490}{4.9}}t  \\  \\  \\  :  \implies \:  \:  \: \:  \:  \:  \sf \: {t}^{2}  = 100 \\  \\  \\  :  \implies \:  \:  \: \:  \:  \:  \sf \:t = 10

  \\  \\ :  \implies \:  \:  \: \:  \:  \: \sf \:distance = time \times speed \\  \\

Substitute all values :

  \\  \\ :  \implies \:  \:  \: \:  \:  \: \sf \:distance = 10 \times 50 \\  \\  \\ :  \implies \:  \:  \: \:  \:  \: \sf \:distance  = 500

Hence ,Horizontal distance = 500

Similar questions