Math, asked by rangkhamj, 9 months ago

An aeroplane is flying at a height of 300m above the ground. Flying at this height, the angle of depression from the aeroplane of two points on both banks of a river in opposite directions are 45 and 60 respectively..Find the width of the river . ( Use √3= 1.732)

Answers

Answered by RvChaudharY50
46

||✪✪ QUESTION ✪✪||

An aeroplane is flying at a height of 300m above the ground. Flying at this height, the angle of depression from the aeroplane of two points on both banks of a river in opposite directions are 45 and 60 respectively..Find the width of the river . ( Use √3= 1.732)

|| ✰✰ ANSWER ✰✰ ||

❁❁ Refer To Image First ..❁❁

From image we have :-

P = Position of Plane ..

→ ∠PBM = 45°

→ ∠PAM = 60°

→ AM = Let x m.

→ BM = Let y m.

→ AB = width of River .

→ PM = Height of Aeroplane From Ground = 300m.

So, in Rt.∆PMB we have now :-

Tan45° = Perpendicular / Base

➼ 1 = PM / BM

➼ PM = BM

➼ BM = y = 300 m ------------------ Equation

______________________

In Rt.PMA now :-

Tan60° = PM / MA

➻ √3 = (300/x)

➻ X = (300/√3) .

Rationalising RHS part Now,

X = (300/√3) * (√3/√3)

➻ X = (300√3)/3

➻ X = 100√3

Putting 3 = 1.732 (Given) now,

X = 1.732 * 100

→ X = 173.2 m --------------------------- Equation

___________________

Now,

width of River = AB

➺ AB = AM + MB

Putting Values From both Equations now, we get,

AB = 173.2 + 300

➺ AB = 473.2 m .

width of River is 473.2 m.

Attachments:
Answered by Anonymous
278

\sf\red{R}\sf\orange{a}\sf\green{d}\sf\blue{h}\sf\purple{e} \sf\red{R}\sf\orange{a}\sf\green{d}\sf\blue{h}\sf\purple{e}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

\huge{\boxed{\bold \orange{\fcolorbox{red}</h3><h3>{black}{QUESTION}}}}

\\

Aɴ ᴀᴇʀᴏᴘʟᴀɴᴇ ɪs ғʟʏɪɴɢ ᴀᴛ ᴀ ʜᴇɪɢʜᴛ ᴏғ 300ᴍ ᴀʙᴏᴠᴇ ᴛʜᴇ ɢʀᴏᴜɴᴅ. Fʟʏɪɴɢ ᴀᴛ ᴛʜɪs ʜᴇɪɢʜᴛ, ᴛʜᴇ ᴀɴɢʟᴇ ᴏғ ᴅᴇᴘʀᴇssɪᴏɴ ғʀᴏᴍ ᴛʜᴇ ᴀᴇʀᴏᴘʟᴀɴᴇ ᴏғ ᴛᴡᴏ ᴘᴏɪɴᴛs ᴏɴ ʙᴏᴛʜ ʙᴀɴᴋs ᴏғ ᴀ ʀɪᴠᴇʀ ɪɴ ᴏᴘᴘᴏsɪᴛᴇ ᴅɪʀᴇᴄᴛɪᴏɴs ᴀʀᴇ 45° ᴀɴᴅ 60° ʀᴇsᴘᴇᴄᴛɪᴠᴇʟʏ.Fɪɴᴅ ᴛʜᴇ ᴡɪᴅᴛʜ ᴏғ ᴛʜᴇ ʀɪᴠᴇʀ . ( Usᴇ √3= 1.732).

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

\huge{\boxed{\bold \orange{\fcolorbox{red}</h3><h3>{black}{SOLUTION}}}}

\\

Lᴇᴛ BD ʙᴇ ᴛʜᴇ ʟᴇɴɢᴛʜ ᴏғ ᴛʜᴇ ʀɪᴠᴇʀ ᴀɴᴅ A ʙᴇ ᴛʜᴇ ᴀʀᴇᴏᴘʟᴀɴᴇ.

\\

❝ ★ ʀᴇғᴇʀ ᴛʜᴇ ɢɪᴠᴇɴ ɪᴍᴀɢᴇ ★ ❞

\\

☞ tan 45° = AC / BC

\\

☞ 1 = 300 / BC

\\

☞ BC = 300 m

\\

☛ tan 60° = AC / CD

\\

☛ √3 = 300 / CD

\\

☛ CD = 300/√3 × √3 / √3

\\

☛ 300√3 / 3

\\

☛ 100√3

\\

☛ 1.732 × 100

\\

☛ 173.2

\\

ᴛʜᴇ ᴡɪᴅᴛʜ ᴏғ ᴛʜᴇ ʀɪᴠᴇʀ = ʙᴄ + ᴄᴅ

\\

➠ 300 + 173.2

\\

➠ 473.2 m

\\

The width of the river = \huge\pink{473.2\:m}

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions