Physics, asked by ronitrajkatoch, 9 months ago

an aeroplane is flying horizontally at height of 490m with a velocity of 360km/h. A bag containing ration is to be dropped to the jawans on the ground. How far from them should the bag be released, so that it falls directly over them​

Answers

Answered by BrainlyConqueror0901
21

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Distance=1\:km}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}}  \\  \tt: \implies Height(h) = 490 \: m \\  \\ \tt: \implies Initial \: velocity(  v_{x}) = 360 \: km/h \\  \\ \red{\underline \bold{To \: Find :}}  \\  \tt: \implies Distance (AB) =?

• According to given question :

 \tt \circ \:  v_{x} = 360 \times  \frac{5}{18}  = 100 \: m/s\\  \\ \tt \circ \:  v_{y}   = 0 \: m/s \\  \\  \tt \circ \: Acceleration = 9.8 \:  {m/s}^{2} \\  \\  \bold{As \: we \: know \: that} \\  \tt: \implies  s = ut +  \frac{1}{2}  {at}^{2}  \\  \\ \tt: \implies h =  v_{y} t+  \frac{1}{2} a {t}^{2}  \\  \\ \tt: \implies 490 = 0 \times t +  \frac{1}{2}  \times 9.8 \times  {t}^{2}  \\  \\ \tt: \implies  \frac{490 \times 2}{9.8}  =  {t}^{2}  \\  \\ \tt: \implies t =  \sqrt{100}  \\  \\  \green{\tt: \implies t = 10 \: sec} \\  \\  \bold{For \: distance \:AB :} \\ \tt: \implies AB =  v_{x}t \\  \\ \tt: \implies AB =  100 \times 10 \\  \\  \green{\tt: \implies AB= 1000 \: m = 1 \: km}


BloomingBud: cool
BrainlyConqueror0901: thnx
Answered by md8404052
0

Explanation:

व्हाई इज इक्वल टू 5 सेंटीमीटर इज इक्वल टू थ्री सिक्सटी किलोमीटर जीव इक्वल टू 9.8 मीटर किलोमीटर

Similar questions