Math, asked by ColdFox, 1 month ago

An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. at the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. how far apart will be the two planes after 1 1/2 hours?​

Answers

Answered by maddalakumar40
12

Answer:300✓61km

Explanation:

brother distance equals to speed into time in a right angle triangle the square of hypotenuse is equal to the sum of the square of the other two sides AV the distance travelled by aeroplane travelling towards north

AB=1000 kilometre per hour×1×1/2

=1000×3/2 km

AB=1500km

bc is the distance travelled by another aeroplane travelling towards west.

=1200×3/2h

bc=1800km

now,In ∆ABC (phythagours theorem)

=(1500) whole square+(1800) whole square

=2250000+3240000

AC square=5490000

AC=✓5490000

=300✓61km

The distance between two planes after 1×2/2

he=300✓61km

Answered by MrSnappy
137

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\large \bf{  \orange{\underline{\underline{⚘Given:-}}}}

 \bf{➢Speed \:  Of \:  north \:  Flying  \: aeroplane \:  1000 km/hr}

 \bf{➢Speed \:  of  \: west \: Flying  \: aeroplane= 1200 km/hr}

\large \bf{  \orange{\underline{\underline{⚘To \: Find:-}}}}

 \bf{➢Distance \:  between  \: the \:  two \:  planes \:  after \:  1.5 hours \:  ,i.e., \: BC}

\large \bf{  \orange{\underline{\underline{⚘Solution:-}}}}

 \bf {We \:   know  \: that }

 \bf{ \pink➸ \: Speed = \dfrac{Distance}{Time} }

 \bf{ \pink➸ \: Distance = Speed  \times Time}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\tt{➭Speed =  1000 km/hr \tiny \green{(North  \: Flying) }} \\  \tt{1200 Km/hr \tiny \green{(West \:  Flying)}}\\ \\   \tt{➭Time=  1 \dfrac{1}{2} \tiny \green{(North  \: Flying) }} \\ \tt{ 1 \dfrac{1}{2} \tiny \green{(West \:  Flying)}}\\ \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{➭Distance=AB=1000×1 \dfrac{1}{2}}\tiny \green{(North Flying) } \\  \tt{AC=1200×1 \dfrac{1}{2}}\tiny \green{(West \:  Flying)}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

--------------------------------------------

 \bf{AB=1000×1 \dfrac{1}{2}}

 \qquad \bf{ \red ➠\cancel {1000}} \times  \dfrac{3}{ \cancel{2} }

 \qquad \bf{ \red➠500 \times 3}

\qquad\frak{ \red➠1500  \: km}

 \bf{AC=1200×1 \dfrac{1}{2}}

 \qquad \bf{ \red ➠\cancel {1200}} \times  \dfrac{3}{ \cancel{2} }

 \qquad \bf{ \red➠600 \times 3}

\qquad \frak{ \red➠1800  \: km}

 \bf{➢Now  \: We  \: have \:  to \:  find  \: distance \:  BC}

 \bf{➢Since  \: North \:  and \:  West  \: are \:  Perpendicular }

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf{ \angle BAC=90   \degree}

--------------------------------------------

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

 \bf{So  \:  \triangle ABC \:  is  \: a  \: right \:  angle \:  triangle }

 \bf{Using  \: Pythagoras  \: theorem  \: in  \: right \:  angle \:  triangle  \: ABC}

 \bf{(Hypotenuse)²=(Height)²+(Base)²}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ➭ \bf{(BC)²=(AB)²+(AC)²}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ➭ \bf{(BC)²=(1500)²+(1800)²}

 \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ➭ \bf{(BC)²=2250000+3240000}

 \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ➭ \bf{BC= \sqrt{5490000} }

 \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf{ \pink ➠ \sqrt{3 \times 3 \times 61 \times 100 \times 100}   }

 \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf{ \pink ➠ \sqrt{ ( {3})^{2}  \times (100)^{2}   }  \times  \sqrt{61} }

\:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf{ \pink ➠ 3 \times 100   \times  \sqrt{61} }

 \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:     \bigstar\underline{\boxed{\frak{ \orange{ 300 \sqrt{61} }}}}

 \green\large\qquad \boxed{{\begin{array}{cc}  \bf{Hence,  \: Two  \: planes \:  would  \: be \:  300   \sqrt{61}  \: km} \\  \bf \: from \: each \: other.\end{array}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Concept Used Here

  \orange{\large\qquad \boxed{ \boxed{\begin{array}{cc}  \\   \bf Pythagoras  \: theorem\\    \\   \red{\boxed{ {\bf{(Hypotenuse)²=(Height)²+(Base)²}} } }\\  \\  \\  \\  \end{array}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions