an aeroplane takes off at an angle of 60 degree to the horizontal. if the velocity of the plan 200 km/hr calculate it's horizontal and vertical component of it's
Answers
\huge{ \underline{ \underline{ \fcolorbox{white}{pink}{{Answer :- }}}}}
Answer :-
\sf{Here \: \: ν=200 {kmh}^{ - 1}} < /p > < p >Hereν=200kmh
−1
</p><p>
\sf{θ=60{ \degree} } < /p > < p >θ=60°</p><p>
\sf{∴ Horizontal \: \: component \: \: < /p > < p > ν _x < /p > < p > }∴Horizontalcomponent</p><p>ν
x
</p><p>
\sf{=νcosθ=200cos60{ \degree} < /p > < p > }=νcosθ=200cos60°</p><p>
\sf{=200× \frac{1}{2} < /p > < p > }=200×
2
1
</p><p>
\sf{=100kmh < /p > < p > ^−1 < /p > < p > < /p > < p > }=100kmh</p><p>
−
1</p><p></p><p>
\sf{Vertical \: \: component < /p > < p > \: \: ν _y < /p > < p > }Verticalcomponent</p><p>ν
y
</p><p>
\sf{sinθ=200sin60 < /p > < p > }sinθ=200sin60</p><p>
\sf{=200× \frac{3}{2} < /p > < p > < /p > < p > }=200×
2
3
</p><p></p><p>
\sf{= \frac{100}{3} \: < /p > < p > kmh < /p > < p > ^−1}=
3
100
</p><p>kmh</p><p>
−
1
\large{\underline{\underline{\red{\bold{hope\: íts \:help\: u\: }}}}}
hope
ı
ˊ
tshelpu