Physics, asked by kumarpawan2266, 9 months ago

An air craft executes a circular loop at a speed of 200 ms⁻¹ with its wings banked at 45°. The radius of the loop is

Answers

Answered by aditit867
0

Answer:

Using the relation for the radius (r) of loop.

tanθ=

rg

v

2

or, tan12

o

=

r×10

(150)

2

or, r=

0.2125

2250

=10.6×10

3

m=10.6km

Answered by Anonymous
30

Explanation:

GIVEN :-

  • Velocity of air craft , v = 200 m/s.

  • Angle of Wings banking , ∅ = 45°.

  • Acceleration due to gravity , g = 10 m/s².

TO FIND :-

  • The radius of the loop.

SOLUTION :-

  \:  \underline{  \boldsymbol{we \: know \: the \: relation,}} \\  \\

:\implies \displaystyle \sf \tan \theta = \dfrac{v^{2}}{rg} \\  \\  \\

:\implies \displaystyle \sf \tan 45  ^{ \circ}  = \dfrac{200^{2}}{r \times 10} \\  \\

 \\ :\implies \displaystyle \sf 1 =   \dfrac{40000}{r \times 10} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg \lgroup \:  \tan45^{ \circ}   = 1\bigg \rgroup \\  \\  \\

:\implies \displaystyle \sf r =  \dfrac{40000}{10}  \\  \\  \\

:\implies \underline{ \boxed{ \displaystyle \sf r \:  = 4000 \: cm. }}\\  \\

___________________

 \because\displaystyle \sf 1 \: km = 1000 \: cm. \\  \\  \\

 \dashrightarrow \: \displaystyle \sf r \:  = 4000 \: cm. \\  \\  \\

 \dashrightarrow \: \displaystyle \sf r =  \dfrac{4000}{1000}   \: km\\  \\  \\

\dashrightarrow \: \displaystyle \sf r = 4 \: km \:  \:  \:  \:  \:  \:  \:  \bigg \lgroup   radius \: of \: lo \ op \bigg \rgroup \\  \\

 \therefore \: \underline {\displaystyle \sf radius \ of \ the  \  lo \ op  \ is  \ 4 km.}

Similar questions