An alloy of gold and copper
(densities 20gm/cm' and
10gm/cmº respectively) weighs
30 gm in air and 28 gm. In water
(density = 1 gm/cm). Find the
ratio of volumes of gold and
copper respectively.
Answers
Answer:
An alloy of gold and copper(densities 20gm/cubic.cm and
\textsf{10gm/cubic.cm respectively) weighs 30 gm in air and 28 gm}10gm/cubic.cm respectively) weighs 30 gm in air and 28 gm
\textbf{To find:}To find:
\textsf{Ratio of volumes of gold and copper}Ratio of volumes of gold and copper
\textbf{Solution:}Solution:
\underline{\textsf{Formula used:}}
Formula used:
\boxed{\mathsf{Density=\dfrac{Mass}{Volume}}}
Density=
Volume
Mass
\underline{\mathsf{Gold:}}
Gold:
\mathsf{Density=20\;gm/cm^3}Density=20gm/cm
3
\mathsf{Mass=30\;gm}Mass=30gm
\mathsf{Volume=\dfrac{Mass}{Density}}Volume=
Density
Mass
\implies\mathsf{V_1=\dfrac{30}{20}}⟹V
1
=
20
30
\underline{\mathsf{Copper:}}
Copper:
\mathsf{Density=10\;gm/cm^3}Density=10gm/cm
3
\mathsf{Mass=28\;gm}Mass=28gm
\mathsf{Volume=\dfrac{Mass}{Density}}Volume=
Density
Mass
\implies\mathsf{V_2=\dfrac{28}{10}}⟹V
2
=
10
28
\mathsf{Now,}Now,
\mathsf{\dfrac{V_1}{V_2}=\dfrac{\dfrac{30}{20}}{\dfrac{28}{10}}}
V
2
V
1
=
10
28
20
30
\mathsf{\dfrac{V_1}{V_2}=\dfrac{\dfrac{3}{2}}{\dfrac{14}{5}}}
V
2
V
1
=
5
14
2
3
\mathsf{\dfrac{V_1}{V_2}=\dfrac{3}{2}{\times}\dfrac{5}{14}}
V
2
V
1
=
2
3
×
14
5
\mathsf{\dfrac{V_1}{V_2}=\dfrac{15}{28}}
V
2
V
1
=
28
15
\implies\boxed{\mathsf{V_1\;:\;V_2=15\;:\;28}}⟹
V
1
:V
2
=15:28