An alternating emf of e = 200 sin 100nt is applied across a capacitor
capacitance 2uF. The capacitive reactance and the peak current is
(A) 5x103
12,4 x 10-TA
(B) 4 x 10-27 12, 5x10A
TT
(C)
4x10-2
12,5 x 103 A
(D) 41,5 x 10-3 A
A
Answers
Answered by
32
Solution :
As per the given equation ,
- E = 200 sin100πt
Now ,
- E = E₀ sinωt
here ,
- E₀ = peak voltage
- ω = angular velocity
- t = time
On comparing both these equations we get ,
- E₀ = 200
- ω = 100π
(a) Capacitive reactance
X꜀ = 1 / ωC
here ,
- X꜀ = Capacitive reactance
- ω = angular velocity
- C = capacitance
⇒ X꜀ = 1 / 100 x π x 2 x 10⁻⁶
⇒ X꜀ = 1 / 6.28 x 10⁻⁴
⇒ X꜀ = 0.159 x 10⁴ Ω
The value of capacitive reactance is 0.159 x 10⁴ Ω.
(2)Peak current
I₀ = E₀ / X꜀
here ,
⇒ I₀ = 200 / 0.159 x 10⁴
⇒ I₀ = 1257.8 x 10⁻⁴
⇒ I₀ = 0.126 A (approx.)
The value of peak current is 0.126 A .
Similar questions