An alternating voltage is given by 100 sin 314t volts .Its average value will be?
Answers
Answered by
0
Answer:
ms
=141.42 V is the rms voltage
f=0.5\ Hzf=0.5 Hz
T=2\ sT=2 s
Explanation:
Here we are given that:
V=100\ \sin(314\ t)V=100 sin(314 t)
here:
V_0=100\ VV
0
=100 V is the maximum value of the voltage.
For a sinusoidal parameter we have the RMS value as:
V_{rms}=\frac{V_0}{\sqrt{2} }V
rms
=
2
V
0
Hence
V_{rms}=\frac{100}{\sqrt{2} }V
rms
=
2
100
V_{rms}=141.42\ VV
rms
=141.42 V
On Comparing we've:
\omega=314\ rad.s^{-1}ω=314 rad.s
−1
we know :
\omega=2\pi.fω=2π.f
where:
f=f= frequency
f=\frac{314}{2\pi}f=
2π
314
f=0.5\ Hzf=0.5 Hz
Time period:
T=\frac{1}{f}T=
f
1
T=2\ sT=2 s
Similar questions