Math, asked by imvishaljas, 1 year ago

an altitude of a triangle is five-thirds the length of its corresponding base if the altitude be increased by force and them and the best decreased by 2 cm the area of a triangle remain the same find the base and the altitude of the triangle

Answers

Answered by Anonymous
2

let \: the \: base \: of \: the \: triangle \: be \: x \: cm \\  \\  \\  \\
then \: the \: altitude \: of \: the \: triangle \: will \: be \:   \frac{5}{3}x \: cm \\  \\  \\  \\
therefore \: the \: area \: of \: the \: given \: triangle =  \frac{1}{2}  \times base \times altitude \\  \\  \\
 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{5}{6} {x}^{2}





we \: now \: have \: area \: of \: the \: new \: triangle = area \: of \: the \: given \: triangle \:  \\  \\  \\  \\  \\
therefore \\  \\ area \: of \: the \: new \: triangle \:  =  \frac{1}{2} \times new \: base \times new \: altitude \\  \\  \\
 \frac{5}{6}  {x}^{2}  = \frac{1}{2}(x - 2)( \frac{5}{3} x + 4)
 \frac{5}{6} {x}^{2} = \frac{1}{2} x( \frac{5}{3}  + 4) - 2( \frac{5}{3} x + 4) \\  \\  \\
 \frac{5}{6} {x}^{2} =  \frac{1}{2}(  \frac{5}{3} {x}^{2}  + 4x -  \frac{10}{3}x - 8) \\  \\  \\
 \frac{5}{6} {x}^{2}  =  \frac{1}{2} \frac{5}{3} {x}^{2}  + \frac{12x - 10x}{3} - 8 \\  \\
 \frac{5}{6} {x}^{2}  =  \frac{1}{2} ( \frac{5}{3} {x }^{2} +  \frac{2}{3}x - 8) \\  \\
 \frac{5}{6} {x}^{2}  =  \frac{5}{6} {x}^{2}  +  \frac{1}{3} x - 4 \\  \\  \\
0 =  \frac{1}{3}x - 4 \:  \:  \:  \:  \: (like \: terms \:  \frac{5}{6}  {x}^{2} gets \: cncelled)
0 =  \frac{1}{3}x = 4
3x \frac{1}{3}  = 3 \times 4 \:  \:  \:  \:  \: (multiplying \: by \: 3 \: on \: both \: the \: sides) \\  \\  \\

altitude \: of \: the \: given \: tringle =  \frac{5}{3}  \times 12 = 20cm
area \: of \: the \: given \: triangle =  \frac{1}{3} \times 12 \times 20 = 120 {cm}^{2}   \\  \\  \\
area \: of \: the \: new \: triangle =  \frac{1}{2}  \times (12 - 2) \times (20  + 4) \\  \\  \\  \\
 =  \frac{1}{2} \times 10 \times 24 = 120 {cm}^{2}  \\  \\  \\
Thus,the base of the triangle=12cm



Area of the new triangle=Area of the given triangle=
120 {cm}^{2}



HOPE THIS HELPS YOU!!!❤❤
Similar questions