An aluminum wire 400 meters long has a resistance of 0.25ohm. find its area of cross section . find the area of cross section required if the wire is of copper ( specific resistance of copper and aluminum are 1.73×10power-8 and 2.83×10power-8 ohm respectively
Answers
Explanation:
The resistance of an object depends on its shape and the material of which it is composed. The cylindrical resistor in Figure 1 is easy to analyze, and, by so doing, we can gain insight into the resistance of more complicated shapes. As you might expect, the cylinder’s electric resistance R is directly proportional to its length L, similar to the resistance of a pipe to fluid flow. The longer the cylinder, the more collisions charges will make with its atoms. The greater the diameter of the cylinder, the more current it can carry (again similar to the flow of fluid through a pipe). In fact, R is inversely proportional to the cylinder’s cross-sectional area A.
A cylindrical conductor of length L and cross section A is shown. The resistivity of the cylindrical section is represented as rho. The resistance of this cross section R is equal to rho L divided by A. The section of length L of cylindrical conductor is shown equivalent to a resistor represented by symbol R.
Figure 1. A uniform cylinder of length L and cross-sectional area A. Its resistance to the flow of current is similar to the resistance posed by a pipe to fluid flow. The longer the cylinder, the greater its resistance. The larger its cross-sectional area A, the smaller its resistance.
For a given shape, the resistance depends on the material of which the object is composed. Different materials offer different resistance to the flow of charge. We define the resistivityρ of a substance so that the resistance R of an object is directly proportional to ρ. Resistivity ρ is an intrinsic property of a material, independent of its shape or size. The resistance R of a uniform cylinder of length L, of cross-sectional area A, and made of a material with resistivity ρ, is
R
=
ρ
L
A