Physics, asked by triconeinternat5208, 11 months ago

An amount n (in moles) of a monatomic gas at an initial temperature T0 is enclosed in a cylindrical vessel fitted with a light piston. The surrounding air has a temperature Ts (> T0) and the atmospheric pressure is Pα. Heat may be conducted between the surrounding and the gas through the bottom of the cylinder. The bottom has a surface area A, thickness x and thermal conductivity K. Assuming all changes to be slow, find the distance moved by the piston in time t.

Answers

Answered by bhuvna789456
0

The distance moved by the piston in time t is given by d x=\frac{n r}{p o A}(T s-T o)\left(1-e^{-2 K \mathcal{A} t} / 5 x n R\right)

Explanation:

Step 1:

Let us Consider,

Surface Area = A

Thickness = X

Thermal Conductivity = K

Atmospheric pressure = P

Mono atomic gas dQ = ncpd

p d v=n R d T

p A d x=n R d T

d T=\frac{P A d x}{n r}

Step 2:

The heat transfer is given by the following formula,

\frac{d Q}{d t}=-\frac{K A}{x}(T s-T 0)

On substituting the values of dQ, we get

\frac{n c p d T}{d t}=\frac{K A}{x}(T s-T 0)

\frac{5}{2} n R \frac{d T}{d t}=\frac{K A}{x}(T s-T 0)

\frac{d T}{d t}=-\frac{2 K A}{5 x n R}(T s-T 0)

Step 3:

On integrating the above equation with respect to time t,

\int_{T s}^{T} \frac{d T}{(T s-T 0)}=\frac{-2 K A}{5 x n R} \int_{0}^{t} d t

\ln \frac{T s-T}{T s-T 0}=\frac{-2 K A t}{5 x n R}

T s-T=(T s-T 0) e^{-2 K A t} / 5 x n R

\begin{aligned}&T s-T=(T s-T 0) e^{-2 K A t} / 5 x n R\\&T=T s-(T s-T 0) e^{-2 K A t} / 5 x n R\end{aligned}

\Delta T=T-T 0

Step 4:

On substituting the value of T in above equation, we get

d T=T s-(T s-T 0) e^{-2 K A t} / 5 x n R^{-T 0}

d T=(T s-T 0)\left(1-e^{-2 K A t} / 5 x n R\right)

As we know the value of dT,

\frac{P A d x}{n R}=(T s-T 0)\left(1-e^{-2 K A t} / 5 x n R\right)

d x=\frac{n r}{p o A}(T s-T o)\left(1-e^{-2 K A t} / 5 x n R\right)

Thus the distance moved by piston with respect to time period t is given by d x=\frac{n r}{p o A}(T s-T o)\left(1-e^{-2 K \mathcal{A} t} / 5 x n R\right)

Attachments:
Answered by Anonymous
2

\huge{\boxed{\mathcal\pink{\fcolorbox{red}{white}{Answer}}}}

check the above attachment

Attachments:
Similar questions