Math, asked by anirbandutta348, 2 months ago

an angle a is divided into two parts b and c such that tan b : tan c = x:y ; prove that sin ( b - c) = (x+y/x-y) sin a​

Answers

Answered by Anonymous
68

 \large{ \underline{ \underline{ \bigstar \:  \:  \:   \:  \: \: { \pmb{ \sf{Question \:  : }}}}}}\\

  • An angle a is divided into two parts b and c such that tan b : tan c = x:y ; prove that sin ( b + c ) = ( x+y/x-y ) sin ( b - c )

 \large{ \underline{ \underline{ \bigstar \:  \:  \:   \:  \: \: { \pmb{ \sf{Solution \:  : }}}}}}

 \\  \dashrightarrow \:  \:  \sf \tan(b)  :  \tan(c)  = x : y \\  \\

 \sf \dashrightarrow \frac{ \tan(b) }{ \tan(c) }  =  \frac{x}{y}  \\  \\

 \sf \dashrightarrow  \frac{ \sin(b) \cos(c)  }{ \sin(c) \cos(b)  }  =  \frac{x}{y}  \\  \\

 \sf \dashrightarrow  \frac{ \sin(b)  \cos(c) +  \cos(b)   \sin(c) }{ \sin(b) \cos(c)   -  \cos(b) \sin(c)  }  =  \frac{x + y}{x - y}  \\  \\

 \sf \dashrightarrow \frac{ \sin(b + c) }{ \sin(b - c) }  =  \frac{x + y}{x - y}  \\  \\

 \sf \dashrightarrow \:   \blue{\sin(b + c)  =  \bigg( \frac{x + y}{x - y} \bigg) \sin(b - c)} \:  \:  \:  \:  \:   \:  \:  \:  \:    \bf{Proved.}\\  \\

 \\  \\    \frak \colorbox{lightblue}{BriefReflections} \\  \\  \\  \\

Similar questions