Math, asked by kumarankusharyan203, 11 months ago

An angle of a quadrilateral measures five-third of a right angle and other three angles are equal.Find the measure of each of the equal angles.​

Answers

Answered by shi22052004
13

An angle of a quadrilateral measures five-third of a right angle and other three angles are equal.Find the measure of each of the equal angles.​

#bal

Expert Answer:

Let x be one the three equal angles.

Sum of all the angles of a quadrilateral = 360o

⇒ x + x + x + 120o = 360o

⇒ 3x = 360o -120o

⇒ 3x = 240o

⇒ x = 80o

Thus, the measure of each of the equal angle is 80o

Answered by XxItzzMrUnknownxX
37

\bf{\dag}\:{\underline{\sf{Question\::}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

An angle of a quadrilateral measures five-third of a right angle and other three angles are equal. Find the measure of each of the equal angles.

\bf{\dag}\:{\underline{\underline{\sf{Answer\::}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Each of the equal angles of quadrilateral measures 70°.

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━

\bf{\dag}\:{\underline{\underline{\sf{Given\::}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

One angle of quadrilateral = 5/3(Right angle)

Other three angles of quadrilateral are equal

\bf{\dag}\:{\underline{\underline{\sf{To\:Find\::}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Measure of each equal angles?

\bf{\dag}\:{\underline{\underline{\sf{Solution\::}}}}

☯ We know that, one angle of quadrilateral is 5/3 of right angle it means one angle of quadrilateral is 5/3 of 90°. Therefore;

\begin{gathered}\\ :\implies\:\tt One\:angle = \dfrac{5}{3}\:of\:90\end{gathered}

\begin{gathered}\\ :\implies\:\tt One\:angle = \dfrac{5}{\cancel{3}}\:\times\:\cancel{90}\end{gathered}

\begin{gathered}\\ :\implies\:\tt One\:angle = 5\:\times\:30\end{gathered}

\begin{gathered}\\ :\implies\:{\underline{\boxed{\tt{One\:angle = 150^{\circ}}}}}\end{gathered}

☯ Hence, one angle of quadrilateral measures 150° and we know that other three angles are equal.

Let each equal angle be y

We know that,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\quad\bigstar\:{\boxed{\sf{\pink{Sum_{(angles\:of\:quadrilateral)} = 360^{\circ}}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Therefore,

\begin{gathered}\\ :\implies\:\tt 150 + y + y + y = 360\end{gathered}

\begin{gathered}\\ :\implies\:\tt 150 + 3y = 360\end{gathered}

:⟹150+3y=360

\begin{gathered}\\ :\implies\:\tt 3y + 150 = 360\end{gathered}

\begin{gathered}\\ :\implies\:\tt 3y = 360 - 150\end{gathered}

\begin{gathered}\\ :\implies\:\tt 3y = 360 - 150\end{gathered}

\begin{gathered}\\ :\implies\:\tt 3y = 210\end{gathered}

\begin{gathered}\\ :\implies\:\tt y = {\cancel{\dfrac{210}{3}}}\end{gathered}

\begin{gathered}\\ :\implies\:{\underline{\boxed{\tt{y = 70^{\circ}}}}}\end{gathered}

Hence, each of the equal angles of quadrilateral measures 70°.

▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions