Math, asked by gowdaarun6050, 3 months ago

an ap 12th term is - 13 and the sum of of first 4 terms is 24find the sum of drst 10 terms

Answers

Answered by mathdude500
2

Given Question:-

  • An AP whose 12th term is - 13 and the sum of the first 4 terms is 24. Find the sum of first 10 terms.

─━─━─━─━─━─━─━─━─━─━─━─━─

Answer :-

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{a_{12} =  - 13} \\ &\sf{S_4 \:  = 24} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{S_{10}}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

Formula used:-

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\blue{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2}  \: ( \: 2\:a\:+\:(n\:-\:1)\:d \: )}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

  • Sₙ is sum of first n terms.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Let -  \begin{cases} &\sf{first \: term \: of \: an \: ap \: be \: a} \\ &\sf{common \: difference \: be \: d} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 1 }}

☆ Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\:\:{{{{\bf{{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

➣ It is given that 12ᵗʰ term is - 13

\bf\implies \: - 1 3 \: =  \: a \:  +  \: 11 \: d

\bf\implies \:a \:  =  - 13 \:  -  \: 11d\:  -  -  - (i)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 2 }}

➣ It is given that sum of first 4 terms is 24.

Using formula,

\bf \:  ⟼ S_n\:=\dfrac{n}{2}  \: ( \: 2\:a\:+\:(n\:-\:1)\:d \: )

\sf \:  ⟼ \: 24 \:  =  \: \dfrac{4}{2} (2a + (4 - 1) \times d)

\sf \:  ⟼12 \:  = 2a + 3d

\sf \:  ⟼12 = 2( - 13 - 11d) + 3d \:  \: \:  \:  \:  \:  \:  \:  \:  (using \: (i))

\sf \:  ⟼ \: 12  \: =   \: -  \: 26 \:  -  \: 22 \: d  \: + \:  3 \: d

\sf \:  ⟼ \:  - 19 \: d \:  =  \: 38

\bf\implies \: \boxed{d \:  =  \:  -  \: 2}

☆ On substituting d = - 2 in equation (i), we get

\sf \:  ⟼ \: a \:  =  \:  -  \: 13 \:  - 11 \:  \times  \: ( -  \: 2)

\sf \:  ⟼ \: a \:  =  - 13 + 22

\bf\implies \: \boxed{a \:  =  \: 9}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 3 }}

☆ To find sum of 10 terms

\bf \:  ⟼ S_{10}\:=\dfrac{10}{2}  \: ( \: 2\: \times 9\:+\:(10\:-\:1)\:( - 2) \: )

\bf \:  ⟼ S_{10}\:=\dfrac{10}{2}  \: ( \: 18 \:  -  \: 18)

\bf\implies \: \boxed{S_{10} \:  =  \: 0}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions